
Learning Sentiment Analysis for Accessibility User
Reviews

Wajdi Aljedaani∗, Furqan Rustam†, Stephanie Ludi∗, Ali Ouni‡, and Mohamed Wiem Mkaouer§
∗University of North Texas. Email{wajdi.aljedaani, Stephanie.Ludi@unt.edu}

†KFUEIT University. Email{furqan.rustam1@gmail.com}
‡ETS Montreal, University of Quebec. Email{ali.ouni@etsmtl.ca}

§Rochester Institute of Technology. Email{mwmvse@rit.edu}

Abstract—Nowadays, people use different ways to express
emotions and sentiments such as facial expressions, gestures,
speech, and text. With the exponentially growing popularity
of mobile applications (apps), accessibility apps have gained
importance in recent years as it allows users with specific needs
to use an app without many limitations. User reviews provide
insightful information that helps for app evolution. Previously,
work has been done on analyzing the accessibility in mobile
applications using machine learning approaches. However, to the
best of our knowledge, there is no work done using sentiment
analysis approaches to understand better how users feel about
accessibility in mobile apps. To address this gap, we propose
a new approach on an accessibility reviews dataset, where we
use two sentiment analyzers, i.e., TextBlob and VADER along
with Term Frequency—Inverse Document Frequency (TF-IDF)
and Bag-of-words (BoW) features for detecting the sentiment
polarity of accessibility app reviews. We also applied six classi-
fiers including, Logistic Regression, Support Vector, Extra Tree,
Gaussian Naive Bayes, Gradient Boosting, and Ada Boost on both
sentiments analyzers. Four statistical measures namely accuracy,
precision, recall, and F1-score were used for evaluation. Our
experimental evaluation shows that the TextBlob approach using
BoW features achieves better results with accuracy of 0.86 than
the VADER approach with accuracy of 0.82.

Index Terms—Mobile Applications, User Reviews, Accessibil-
ity, Sentiment Analysis, Machine Learning.

I. INTRODUCTION

Web and mobile applications are common means of en-

gaging with information and services. It is also crucial for

these technologies to be accessible to have equal access

to people with different abilities. However, in most mobile

applications, there is little attention given to accessibility

which results into several difficulties to appropriately utilize

such applications by people with disabilities [6], [5]. Software

application stores like Google Play, App Store and Amazon are

available for searching and downloading mobile apps. Most

of these platforms freely provide features for user reviews

where users can write a review and/or give a star rating. Users’

experience provides a valuable knowledge and can be studied

by developers, designers, and analysts for the identification

of issues in the applications with the help of user reviews

[37], [13]. User reviews can be related to requests for features,

troubleshooting, compliments, complaints, and dissatisfaction.

Reviews can be categorized at higher levels, e.g., how good

or bad a feature is. In addition, this division of the high level

of app reviews can also be related to the design and usability

aspects. Reviews comment on accessibility as well, i.e., the

accessibility of apps to the disabled people on their mobile

devices [56].
While several studies have addressed various problems

related to user reviews [37], [53], [55], [44], [46], [34],

user reviews related to accessibility in mobile applications

are under-studied [16]. Although the growth of mobile app

development is substantial, there is still a lack of mobile-

based accessibility-related research, and associated guidelines

as compared to web-based accessibility [47]. The significance

of mobile app development raises several challenges for a

deeper understanding of user reviews that are focused on

accessibility concerns. Multiple challenges are associated with

the study of user reviews related to accessibility. Prior work

has analyzed an enormous amount of reviews and analysts with

little impact on the field. For example, there is the possibility

of bias in manually identifying the accessibility reviews.
The Internet has become an effective tool through which

people communicate their feelings, emotions, and ideas [21].

Business analysts use this data for monitoring people’s per-

ceptions and opinions about their products. Natural Language

Processing (NLP) based methods have been widely used

for the automatic detection of data contents from the text

[12]. Artificial Intelligence (AI) based approaches have gained

prominence for the development of sentiments or emotion-

based systems [38]. In state-of-the-art Sentiment Analysis

techniques, the issue is that they access the response in the

context of positive or negative aspects but not the specific

feelings of the customer and the intensity of their response. To

deal with these issues, we present a sentiment analysis based

method for identifying accessibility-related problems in mo-

bile apps. The proposed approach is based on machine learning

and NLP methods for Emotion detection and automatically

tags user reviews as positive, negative, or neutral. A supervised

learning method is employed for the annotation of the corpus.

After performing annotation of the corpus, the labeled corpus

is fed into the model for detecting emotions/sentiments from

the user reviews. The proposed system comprises different

stages, including data pre-processing, extraction of features,

and the prediction model.
Following are the key contributions of our research:

• Use of sentiment analysis for tagging the accessibility-

related user reviews.

239

2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)

978-1-6654-3583-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ASEW52652.2021.00053

20
21

 3
6t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

W
or

ks
ho

ps
 (A

SE
W

) |
 9

78
-1

-6
65

4-
35

83
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
EW

52
65

2.
20

21
.0

00
53

Authorized licensed use limited to: University of North Texas. Downloaded on February 26,2022 at 08:12:40 UTC from IEEE Xplore. Restrictions apply.

• Improvement of prediction accuracy of user-reviews tag-

ging.

• We perform a comparison of TextBlob and VADER

sentiment analyzers.

• A replication package of the dataset for extension pur-

poses [1].

Paper organization. Section II discusses the related works.

The study methodology describes in Section III. Following

by Section IV, which presents study results, and Section V

discusses the results. In Section VI we discuss the threats to

validity. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Accessibility in user reviews. Despite the fact that user

reviews can significantly help in improving the accessibility of

even well-established apps [17], [58], approximately 98.76%

of users do not give feedback on accessibility problems to

app stores [16]. Shockingly, roughly 1% of mobile app users

give reviews on accessibility to help in future app improve-

ments. The research was done by Eler et al. [16] to identify

accessibility feedback using 214,053 mobile app reviews. Our

study uses the mentioned dataset. However, after conducting

the manual inspection, we uncovered only 2,663 mobile app

reviews from the research focused on accessibility, and those

were the ones that we used in this work. Our study is one

of the few that have used sentiment analysis to analyze the

preliminary dataset developed by Eler et al.

Text documents classification. Different researchers have

used various taxonomies to classify their reviews, which

depends on their objectives [13], [15], [27], [39], [45], [46].

For example, some studies classify their reviews into cate-

gories such as complaints, bug reports, and future feature

requests. However, many of them do not focus or even mention

accessibility.

The utilization of predefined keywords to categorize doc-

uments has been used in many previous studies, which is a

deviation from automatic classification approaches. In a study

by Eler et al. [16], the researchers used 213 keywords to

investigate user reviews, while Ratzinger et al. [49] used 13

keywords. In our study, contrary to those done previously, we

are using sentiment analysis to understand the opinions of app

users on the accessibility of the apps so that we can understand

the users’ emotions (positive, negative, or neutral) when they

are reporting about accessibility.

A similar study to ours was done by AlOmar et al. [5],

which used automated machine learning to explore accessibil-

ity user reviews. In this study, we use sentiment analysis to

evaluate accessibility user reviews in a selected database. As

far as we know, this is the first study to use such an approach.

III. STUDY DESIGN

The main goal of our study is to automatically identify

user reviews related to accessibility from the application

reviews dataset. Reviews are provided as an input to our

proposed approach, and then it performs sentiment analysis

on the reviews, i.e., whether the review is positive, neutral,

or negative. For this purpose, we generate the classification

features using bag of words, extracted using TF-IDF, similarly

to previous studies processing user reviews [36], [22]. We

build our classification model using corpus reviews and current

classification techniques. We then utilized the classification

model to predict the types of new app reviews. The overview

of the whole process is depicted in Figure 1. The key steps of

our proposed approach are as follows:

Step (1) - Data Collection: For training, the dataset includ-

ing the app reviews and their categories are iden-

tified through manual inspection [16].

Step (2) - Data Preprocessing: To improve the reviews of

the proposed learning algorithms, data cleansing

and pre-processing techniques, i.e., tokenizing,

lemmatizing, stop words removal, and capitaliza-

tion removal, are utilized [3], [2].

Step (3) - Sentiment Analysis: To tag the user reviews, we

used two sentiment analyzers TextBlob [35] and

VADER [26].

Step (4) - Feature Engineering: To create a structured fea-

ture space, TF-IDF and BoW [60] techniques are

used on preprocessed review text.

Step (5) - Model Selection: We used six classification mod-

els for performance evaluation of the proposed pre-

diction model, i.e., LR, SVC, ETC, GNB, GBM,

and ADA. The algorithms that are most commonly

used for text classification were selected [41],

[28]. The performance of the model is validated

after training and evaluating the model. We have

followed the approach provided by Kowsari et

al. [30] which discusses state-of-the-art techniques

and algorithms similar to [5] since the app reviews

are in plain text.

Step (6) - Model Evaluation: We evaluated the performance

of our selected models based on four parameters:

accuracy, precision, recall, and F-score [19], [59].

A. Step 1: Data Collection

In our approach we use a dataset that contains 2,663

manually verified reviews related to accessibility by Eler et

al. [16], as shown in Table I. The collected reviews have been

extracted from 701 applications which fall under 15 different

categories. Eler et al. [16] first collected 214,053 app reviews,

then used 213 keywords for string matching and filtering

down the reviews and kept only those reviews that contain

accessibility-related information. 54 the British Broadcasting

Corporation (BBC) recommendations [8] for accessibility are

used for derivation of keywords. After this step, 5,076 potential

accessibility reviews were selected after performing string

matching.

TABLE I: Statistics of the dataset.
Number of Apps 701
App Categories 15

All Reviews 214,053
Accessibility Reviews 2,663

240

Authorized licensed use limited to: University of North Texas. Downloaded on February 26,2022 at 08:12:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Overview Approach of Our Study.

Manual inspection showed that 2,663 are true positive. The

process of Levin et al. [33] is followed for verification of

previous manually labeled reviews, and 243 out of 2,663, i.e.,
we randomly selected 9% of sample reviews. This value is

approximately equal to the sample size by 95% confidence

level and 6 confidence interval. Then, 243 non-accessibility

reviews were randomly added, and we had 486 total reviews.

After that, their labeling was done by another researcher, and

the data were kept confidential before. To avoid fatigue, 7 days

were given to the review process, and the researcher was given

the opportunity to perform online searching of keywords that

they were unaware of during the labeling process. After com-

pleting the data labeling process, we validated them against

the originally labeled reviews. Cohen’s Kappa coefficient [14]

was utilized to evaluate the categorical classes in terms of

inter-rater agreement level, and an agreement level of ”0.82”

was achieved. The perfect agreement values are 0.81˘1.00 ,

and our agreement values are considered to have an almost

perfect agreement according to Fleiss et al. [20]. The highest

number of documents used in the related studies [33], [32]

was approximately 2000. In contrast to the existing studies,

we have selected 5,663 model creation and validation reviews

as our aim was to provide sufficient reviews to the model that

could signify all potential accessibility topics.

B. Step 2: Data Preprocessing

After completing the data collection process, we selected a

text pre-processing approach from [30], which is similar to [5].

In order to perform text classification accurately by a model, it

is necessary to clean and pre-process the document properly.

For pre-processing the app reviews, NLP techniques using the

Python natural language toolkit [54] have been used in our

approach. These NLP based techniques include:

• Tokenization: In this process, the natural text is split into

tokens that do not contain white space. The app reviews

are tokenized by splitting them into a constituent set of

words.

• Lemmatization: In this process, the suffix of a word is

removed or replaced in order to get its basic form. It also

reduces the count of unique occurrences of similar words.

In the proposed approach, this technique is employed to

pre-process the words in their canonical form to reduce

the count of unique occurrences of similar text tokens.

• Stop-Word Removal: Words that do not contribute to the

classification process, e.g., am, the, etc., are removed.

• Case Normalization: As the exact words with different

font cases need to be treated similarly, e.g., Accessibility”

and ”accessibility”, it is required to convert the whole

text in lower case. It is generally known as a type

of data cleansing which helps in avoiding repetition

of the same features that differ only in terms of case

sensitivity. In the context of accessibility-related reviews,

a user can identify itself as ”Deaf” with upper case ’D’

for expressing his cultural identity in the reviews. Our

classifier is binary; therefore, it will produce the same

classification result for ”Deaf” and ”deaf” and the case

normalization will be safe, and no overruling of users’

expressions will be done.

• Noise Removal: Any noise that can deteriorate the clas-

sification performance and create confusion for the model

while learning is removed in this step. Noise types that

are removed in this step include numeric data, email id,

special characters.

C. Step 3: Sentiment Analysis

We selected TextBlob and VADER tools in our study for

the analysis. We used TextBlob because it is a higher accurate

tool for sentiment analysis than other tools [50]. In comparison

with the TextBlob, we used the VADER, a most use-able

tool for sentiment analysis in recent studies [11]. We used

both sentiment analysis tools for fair comparison analysis with

multiple techniques.

1) TextBlob: is a widely used lexicon-based method1 that

performs different tasks related to natural language processing

(NLP) on raw test [35]. TextBlob algorithm is implemented

with a Python library named TextBlob that works as a pro-

gramming interface for processing text data. With the help

of TextBlob, different tasks can be performed, e.g., analysis

of sentiments in text, creation of POS tags, extraction of

noun phrases, etc. [54]. There are several built-in functions in

TextBlob that help in performing different language processing

tasks. TextBlob can work in different languages, e.g., Spanish,

English, etc. According to research, [42], TextBlob helps in

sentiment analysis of tweet data with positive, negative, or

neutral polarity. TextBlob library works on top of Natural

1https://github.com/sloria/TextBlob

241

Authorized licensed use limited to: University of North Texas. Downloaded on February 26,2022 at 08:12:40 UTC from IEEE Xplore. Restrictions apply.

Language Toolkit NLTK, and its algorithm for sentiment anal-

ysis works together with NLTK and pattern processing [31].

Its dictionary includes around 2918 lexicons. In TextBlob,

polarity calculation is done on two bases, i.e., objectivity

(facts) or subjectivity (personal opinions). The sentiment an-

alyzer returns a sentiment score that comprises polarity and

subjectivity score. The sentiment scoring range of TextBlob is

shown below:
TABLE II: TextBlob sentiment score range

Negative Polarity score < 0
Neutral Polarity score = 0
Positive Polarity score > 0

For subjectivity, the facts-based sentiments have scores

below 0.0, while the personal opinion-based sentiments have

scores above 1.0.

2) VADER: (Valence Aware Dictionary for Sentiment Rea-

soning) is a lexicon-based approach2 that works on gold

standard heuristics. It has English language-based sentiment

lexicons and is scored and validated by a human. To improve

the performance of sentiment analyzer, these lexicons utilize

qualitative methods. KirliA et al. [29] suggested that scoring

done by VADER sentiment analyzer and human raters hold

equal results. Multiple datasets are combined in VADER’s

corpus. Compared to the previous corpus that focuses on

sentiment polarity, VADER also includes the intensity of the

polarity score. Slang words and abbreviations that collectively

make more than 7500 lexicons are present in its corpus. Scores

range between -4.0 to +4.0. The score below -4 specifies the

sentiment as negative, whereas the score above +4 indicates the

sentiment as negative. Vader’s output is depicted in different

terms, i.e., neg, neu, pos, compound. Compound output is the

aggregation of lexicon scores of complete sentences or a text

and ranges from -1.0 to +1.0. The sentiment scoring range of

VADER is shown below:
TABLE III: VADER sentiment score range

Negative compound score <= -0.05
Neutral compound score > -0.05 to compound score < 0.05
Positive compound score >= 0.05

To represent the sentiment intensity and polarity, the

VADER algorithm includes a sentiment lexicon approach and

grammatical rules and syntactic conventions. The VADER lex-

icon approach contains different lexical features that include

acronyms and emoticons. Hence around 7,500 sentiment fea-

tures are present in its dictionary. To determine the sentiment

intensity of a word, grammatical rules are considered, which

can cause variation in the sentiment score of a word.

D. Step 4: Feature Engineering

Feature Engineering is a method of discovering significant

characteristics from data to efficiently train machine learning

algorithms or develop features from the main features [10],

[4]. These features are being used to enhance the performance

of machine learning algorithms [23]. This study used two

methods of feature engineering as follows:

2https://github.com/cjhutto/vaderSentiment

1) TF-IDF: For information retrieval and summarization is

one of the most used scoring metrics is TF-IDF. It is used

for the representation of the term’s significance in each text.

TF and IDF are given as input in the extraction function of

TF-IDF. Tokens that are infrequent in the dataset are given

by TF-IDF. The significance of unusual words increases if it

appears in two documents.

tfidft,d,D = tft,d · idft,D (1)

where terms are indicated by t; each document by d; set of

documents by D. Along with TF-IDF, the ”n-gram range”

parameter is employed. Words’ weight that provides the

weights of corpus for any word is calculated with the help

of TF-IDF. The output is the word matrix being weighted.

An increase in meaning is proportional to the count with the

TF-IDF vectorizer, but the word frequency within the corpus

helps to manage it. The TF technique is often considered for

features extraction and is commonly used for the purpose of

text classification. The terms’ incidence frequency is employed

as a parameter for classifier training. Unlike TF-IDF, in which

less weight is given to more common terms, the TF function

does not consider if a word is popular or not.

2) BoW: One of the methods used for the simple represen-

tation of Natural Language Processing (NLP) and information

retrieval is Bag-of-Words, commonly known as BoW. It is

the easiest and flexible way for obtaining the features of a

document. In BoW, the histogram of the words in the text is

looked at. To train the set, the words’ frequency is used as a

function. In this research, the CountVectorizer function using

the pythons’ Scikit-learn library is utilized to implement the

BoW method. Vectorization is the process of converting a set

of textual data into numerical vectors. Words’ frequency helps

in the operation of CountVectorizer, and it shows that counting

of tokens is done and generation of the limited token matrix

is completed [18]. The BoW is a list of features and terms

that allocates a significance to each attribute which reflects

the particular features’ frequency [25].

E. Step 5: Model Selection

In our study, we considered the following learning algo-

rithms to build our model:

• Logistic Regression (LR): It is a statistical model that is

based on the concept of probability and is akin to linear

regression. LR performs prediction of the outcomes’

probability by fitting the data to a logistic function [7].

• Support Vector Classifier (SVC): It is a popular ML

classifier for solving linear and non-linear problems. It

works well for several practical applications [57], [51]. A

line or hyperplane is generated by SVC, which separated

the data into a section. Low-dimensional input space is

transformed with the help of its Kernel function into

higher dimensional space. This transformation means that

non-separable issues are converted into separable ones. It

mainly helps in solving non-linear differential problems.

SVC separates the data based on labels and performs

complex data transformations [9].

242

Authorized licensed use limited to: University of North Texas. Downloaded on February 26,2022 at 08:12:40 UTC from IEEE Xplore. Restrictions apply.

• Extra Tree Classifier (ETC): A combination of classi-

fication algorithms teaching approach in which outcomes

of several de-correlated random forests collected in a

”forest” are combined for generation of identifications’

outcome, is Extra Tree Classifier (ETC). In principle, it

is very similar to a Random Forest Classifier but differs

from it in other ways, like a decision tree algorithm is

built throughout the forest. In ETC, the Previous training

dataset in the ET Forest is used for the creation of

decision models [52].

• Gaussian Naı̈ve Bayes (GNB): It employs the Gaussian

distributions for the handling of continuous attributes in

the Naive Bayes classification and represents the features’

likelihood based on the classes [40]. GNB assigns each

data point to its nearest class. It considers the distance

from the mean point as well as performs its comparison

to the class variance [24]. Moreover, GNB exhibits faster

performance as compared to other algorithms [48].

• Gradient Boosting Classifier (GBC): Decision trees are

widely utilized for performing gradient boosting. As they

have shown significant results in the classification of the

large system, GB frameworks have gained importance in

machine learning [43].

• Ada Boost Classifier (ADA): uses a linear combination

of ”weak” classifiers for constructing a ”strong” classifier,

like GBC. The ”weak” classifier can be considered a

simple threshold operation on a specific feature category.

Weak classifiers’ training process is known as ”Weak-

Learn”. Ada Boost consumes less memory and has fewer

computational requirements [61].

F. Step 6: Model Evaluation

The performance of our selected models is measured using

the four measurement aspects listed in Table IV below where:

• Positive Predictions labeled correctly by the classifier is

determined by the True Positive (TP) parameter.

• Negative Predictions labeled correctly by the classifier is

determined by the True Negative (TP) parameter.

• Number of negative instances mistakenly presumed as

positive instances by the classifier are determined by the

parameter False Positive (FP).

• Number of positive instances mistakenly presumed as

negative instances by the classifier is determined by the

parameter False Negative (FP).
TABLE IV: Summary of performance measures, formulas, and

definitions.
Measures Formula Definition
Accuracy TP+TN

TP+TN+FP+FN
Calculates the closeness of a measured value to the

standard value.

Recall tp
tp+fn

Calculates the exact number of positive predictions

that are actually observed in the actual class.

Precision tp
tp+fp

Calculates the exact no. of correct predictions

out of all the input sample.

F1-score 2·P ·R
P+R

Calculates the accuracy from the precision and recall.

IV. STUDY RESULTS

This section discusses the results of our research work in

light of the proposed research questions.

RQ1: How do users express their sentiments in their
accessibility app review?

As the expression of users’ thoughts regarding the apps,

reviews are used as a tool. If the accessibility features ad-

dress the users’ needs, the user reviews are written with

positive sentiments On the other hand, if the accessibility

features are not meeting user requirements, then attention

is needed by the developers. These reviews reflect negative

sentiments. Therefore, a review serves as a way to measure

user satisfaction or dissatisfaction about the accessibility, and

the negative reviews help identify accessibility topics that

need to be fixed. In Figure 2, we present the comparison

of sentiment analysis results between TextBlob and VADER.

According to the results of TextBlob, 72.66% users have

positive reviews, 15.88% have negative while the remaining

11.45% have the neutral review. On the other hand, results

generated by the VADER approach show that 79.30% users

have positive reviews, 10.75 are negative, and the remaining

9.95 are neutral reviews. Although there are some differences

in the results of both sentient analyzers, they show a similar

trend, i.e., most of the users have positive reviews about the

apps’ accessibility, few users have negative reviews, while the

least number of users have neutral views about.

Positive Neutral Negative

500

1,000

1,500

2,000

2,500

1,935

305
423

2,112

265 286

TextBlob VADER

Fig. 2: Comparison of TextBlob and VADER sentiment anal-

ysis results.

RQ2:How effective is our proposed sentiment analysis-
based approach in the identification of accessibility re-
views?

To analyze the sentiments of accessibility app users, we

used two sentiments analyzers, i.e., TextBlob and VADER.

Both sentiment analyzers help in the automatic prediction

of emotions from user reviews. We also used six different

machine learning models, i.e., SVC, GNB, GBM, LR, ADA,

and ETC, along with TF-IDF and BoW features with the

sentiment analyzers to categorize the sentiments based on the

result of RQ1. Furthermore, we used four statistical measures

for evaluating the proposed approach. We select the best

hyperparameters setting using the hit and trial method. During

tuning each time, we split the dataset and change the model’s

hyperparameters values. We have done this tuning between

parameter values range such as for n estimator in RF we start

from 50, and we end up at 500 while our best value was 300.

The results of both sentiment analyzers, i.e., TextBlob

and VADER, with TF-IDF and BoW in terms of accuracy,

243

Authorized licensed use limited to: University of North Texas. Downloaded on February 26,2022 at 08:12:40 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Models performance comparison for TextBlob and VADER with TF-IDF and BoW features.
Sentiment Model TF-IDF BoW
Analyzer Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

LR 0.83 0.84 0.59 0.65 0.86 0.80 0.76 0.77
SVC 0.81 0.80 0.54 0.60 0.86 0.76 0.78 0.77

TextBlob ETC 0.83 0.88 0.60 0.66 0.85 0.86 0.68 0.72
GNB 0.65 0.55 0.48 0.50 0.65 0.55 0.47 0.50
GBM 0.80 0.68 0.66 0.64 0.80 0.68 0.66 0.66
ADA 0.71 0.57 0.64 0.59 0.73 0.61 0.69 0.64
LR 0.80 0.73 0.45 0.48 0.81 0.66 0.59 0.61

SVC 0.80 0.72 0.43 0.46 0.82 0.65 0.65 0.65
Vader ETC 0.80 0.80 0.43 0.46 0.81 0.73 0.52 0.56

GNB 0.68 0.45 0.42 0.43 0.68 0.44 0.42 0.43
GBM 0.84 0.66 0.64 0.65 0.80 0.62 0.58 0.59
ADA 0.74 0.46 0.42 0.44 0.72 0.49 0.49 0.49

precision, recall, and F-measure, are presented in Table V.

We observe that when we used the TextBlob method with the

TF-IDF technique, we found that LR and ETC exhibit the

highest accuracy, i.e., 0.83. While for precision and F1-Score,

ETC outperforms the remaining five classifiers. In terms of a

recall measure, GBM performs better when compared to other

techniques with TextBlob. For the BoW technique, TextBlob

with LR and SVC achieved the highest accuracy (0.86) and

F1-score (0.77). TextBlob with the ETC classifier attained

0.86 precision and recall of 0.78 by using the SVC classifier.

Overall results show that TextBlob with the BoW method

shows better accuracy, recall, and F1-score as compared to the

TF-IDF method. On the other hand, the TF-IDF-based method

outperforms BoW in terms of recall measure.

To measure the efficiency of TextBlob, which is a lexicon-

based technique, we used the VADER technique on the same

dataset. Based on the subjectivity and polarity, TextBlob

performs assignment of the polarity score to each word ranging

from -1 and 1. While VADER’s performance depends on the

mapping of lexicon features into sentiment scores done by a

dictionary [26]. For the given dataset, the best accuracy (0.84),

recall (0.64), and F1-score (0.65) for VADER with TF-IDF is

achieved by GMB while ETC outperform in terms of precision

(0.80). For VADER with BoW features, SVC outperform other

models in accuracy (0.82), recall (0.65), and F1-score (0.65).

VADER with ETC exhibits the similar trend in precision but

with a lower value as compared to TF-IDF features. Overall,

results show that TextBlob performs better than VADER with

BoW as well as TF-IDF features.

V. DISCUSSION

In this study, we applied sentiment analysis to identify the

emotions of reviewed users towards the accessibility of apps.

To facilitate the sentiment analysis, we used TextBlob and

VADER, which are both popular lexicon-based methods. We

wanted to know whether the two techniques could detect users’

feelings towards accessibility in their apps based on machine

learning techniques. The results of this study showed that

sentiment analysis was crucial in identifying users’ reviews

towards the accessibility of apps, especially those that are

disabled.

For many persons with disabilities (such as those who are

deaf or blind), expressing their reviews towards various apps

can be challenging. However, they can express their emotions

(positive, neutral, or negative) towards an app, which may help

developers understand whether it is accessible or not. We felt

that disabled persons were not given much attention when

collecting app reviews, probably because of the complexity

involved in getting and analyzing their feedback. This study

has shown that sentiment analysis could be the solution for

determining the emotions of people with disabilities towards

the accessibility of mobile devices. The findings of this study

are important for software developers because it enables them

to know whether disabled persons are satisfied or dissatisfied

with the accessibility of their apps. Thus, developers can make

any necessary changes to facilitate the use of the apps by

persons with disabilities.

VI. THREATS TO VALIDITY

Limitation of selected dataset. We performed training and

testing of our approach on the previously collected dataset.

However, this dataset contains a collection of accessibility

reviews for Android open-source applications only. Hence,

it cannot be generalized for all of the mobile applications

available on the app store. Additionally, we have studied

the English language-based reviews of open-source mobile

applications only, so the results cannot be generalized for

commercially developed projects or reviews are written in

other languages.

VII. CONCLUSION

In this study, we presented an automated sentiment analysis-

based approach for the classification of accessibility-related

app reviews to help the developers detect these issues and

improve their app’s performance in light of user’s reviews.

We employed an existing dataset that is composed of manu-

ally validated accessibility reviews. Two sentiment analyzers,

namely TextBlob and VADER using TF-IDF and BoW, are

utilized with TF-IDF and BoW features. Both of the analyzers

are coupled with six classifiers, namely LR, SVC, ETC, GNB,

GBM, and ADA. Evaluation is done using four measures,

i.e., Accuracy, Recall, Precision, and F1-Score, and the results

show that TextBlob outperforms VADER in the classification

of app reviews. Overall, results show that the ETC classifier

performed best in TF-IDF features while svc is most efficient

in BoW features. Sentiment analysis results also show that

most of the users have given positive reviews about the

accessibility of an app.

244

Authorized licensed use limited to: University of North Texas. Downloaded on February 26,2022 at 08:12:40 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Accessibility dataset. https://doi.org/10.5281/zenodo.5540624, 2021.

[2] W. Aljedaani, Y. Javed, and M. Alenezi. Lda categorization of security
bug reports in chromium projects. In Proceedings of the 2020 European
Symposium on Software Engineering, pages 154–161, 2020.

[3] W. Aljedaani, M. Nagappan, B. Adams, and M. Godfrey. A comparison
of bugs across the ios and android platforms of two open source cross
platform browser apps. In 2019 IEEE/ACM 6th International Conference
on Mobile Software Engineering and Systems (MOBILESoft), pages 76–
86. IEEE, 2019.

[4] B. Alkhazi, A. DiStasi, W. Aljedaani, H. Alrubaye, X. Ye, and M. W.
Mkaouer. Learning to rank developers for bug report assignment.
Applied Soft Computing, 95:106667, 2020.

[5] E. A. AlOmar, W. Aljedaani, M. Tamjeed, M. W. Mkaouer, and Y. N. El-
Glaly. Finding the needle in a haystack: On the automatic identification
of accessibility user reviews. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, pages 1–15, 2021.

[6] A. Alshayban, I. Ahmed, and S. Malek. Accessibility issues in android
apps: state of affairs, sentiments, and ways forward. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), pages
1323–1334. IEEE, 2020.

[7] G. Andrew and J. Gao. Scalable training of l 1-regularized log-linear
models. In Proceedings of the 24th international conference on Machine
learning, pages 33–40, 2007.

[8] BBC. The bbc standards and guidelines for mobile accessibility. https://
www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile, June 2021.

[9] K. P. Bennett and C. Campbell. Support vector machines: hype or
hallelujah? ACM SIGKDD explorations newsletter, 2(2):1–13, 2000.

[10] F. F. Bocca and L. H. A. Rodrigues. The effect of tuning, feature
engineering, and feature selection in data mining applied to rainfed
sugarcane yield modelling. Computers and electronics in agriculture,
128:67–76, 2016.

[11] V. Bonta and N. K. N. Janardhan. A comprehensive study on lexicon
based approaches for sentiment analysis. Asian Journal of Computer
Science and Technology, 8(S2):1–6, 2019.

[12] G. G. Chowdhury. Natural language processing. Annual review of
information science and technology, 37(1):51–89, 2003.

[13] A. Ciurumelea, A. Schaufelbühl, S. Panichella, and H. C. Gall. Analyz-
ing reviews and code of mobile apps for better release planning. In 2017
IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 91–102. IEEE, 2017.

[14] J. Cohen. A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1):37–46, 1960.

[15] A. Di Sorbo, S. Panichella, C. V. Alexandru, C. A. Visaggio, and
G. Canfora. Surf: summarizer of user reviews feedback. In 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pages 55–58. IEEE, 2017.

[16] M. M. Eler, L. Orlandin, and A. D. A. Oliveira. Do android app users
care about accessibility? an analysis of user reviews on the google
play store. In Proceedings of the 18th Brazilian Symposium on Human
Factors in Computing Systems, pages 1–11, 2019.

[17] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser. Automated accessibility
testing of mobile apps. In 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST), pages 116–126.
IEEE, 2018.

[18] S. C. Eshan and M. S. Hasan. An application of machine learning to
detect abusive bengali text. In 2017 20th International Conference of
Computer and Information Technology (ICCIT), pages 1–6. IEEE, 2017.

[19] F. Fang, J. Wu, Y. Li, X. Ye, W. Aljedaani, and M. W. Mkaouer. On the
classification of bug reports to improve bug localization. Soft Computing,
25(11):7307–7323, 2021.

[20] J. L. Fleiss, B. Levin, M. C. Paik, et al. The measurement of
interrater agreement. Statistical methods for rates and proportions,
2(212-236):22–23, 1981.

[21] B. Gaind, V. Syal, and S. Padgalwar. Emotion detection and analysis
on social media. arXiv preprint arXiv:1901.08458, 2019.

[22] T. Hasan and A. Matin. Extract sentiment from customer reviews:
A better approach of tf-idf and bow-based text classification using n-
gram technique. In Proceedings of International Joint Conference on
Advances in Computational Intelligence, pages 231–244. Springer, 2021.

[23] J. Heaton. An empirical analysis of feature engineering for predictive
modeling. In SoutheastCon 2016, pages 1–6. IEEE, 2016.

[24] R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines.
Journal of Machine Learning Research, 1(Aug):245–279, 2001.

[25] X. Hu, J. S. Downie, and A. F. Ehmann. Lyric text mining in music
mood classification. American music, 183(5,049):2–209, 2009.

[26] C. Hutto and E. Gilbert. Vader: A parsimonious rule-based model
for sentiment analysis of social media text. In Proceedings of the
International AAAI Conference on Web and Social Media, volume 8,
2014.

[27] C. Iacob and R. Harrison. Retrieving and analyzing mobile apps feature
requests from online reviews. In 2013 10th working conference on
mining software repositories (MSR), pages 41–44. IEEE, 2013.

[28] N. Jha and A. Mahmoud. Mining non-functional requirements from app
store reviews. Empirical Software Engineering, 24(6):3659–3695, 2019.

[29] A. Kirlic and Z. Orhan. Measuring human and vader performance
on sentiment analysis. Measuring human and Vader performance on
sentiment analysis, 1:42–46, 2017.

[30] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes,
and D. Brown. Text classification algorithms: A survey. Information,
10(4):150, 2019.

[31] R. A. Laksono, K. R. Sungkono, R. Sarno, and C. S. Wahyuni.
Sentiment analysis of restaurant customer reviews on tripadvisor using
naı̈ve bayes. In 2019 12th International Conference on Information
& Communication Technology and System (ICTS), pages 49–54. IEEE,
2019.

[32] S. Levin and A. Yehudai. Boosting automatic commit classification into
maintenance activities by utilizing source code changes. In Proceedings
of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering, pages 97–106, 2017.

[33] S. Levin and A. Yehudai. Towards software analytics: Modeling
maintenance activities. arXiv preprint arXiv:1903.04909, 2019.

[34] X. Li, Z. Zhang, and K. Stefanidis. Mobile app evolution analysis based
on user reviews. In New Trends in Intelligent Software Methodologies,
Tools and Techniques, pages 773–786. IOS Press, 2018.

[35] S. Loria. textblob documentation. Release 0.15, 2:269, 2018.
[36] M. Lu and P. Liang. Automatic classification of non-functional require-

ments from augmented app user reviews. In Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, pages 344–353, 2017.

[37] W. Maalej, H.-J. Happel, and A. Rashid. When users become collabora-
tors: towards continuous and context-aware user input. In Proceedings
of the 24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications, pages 981–990, 2009.

[38] J. Martınez-Miranda and A. Aldea. Emotions in human and artificial
intelligence. Computers in Human Behavior, 21(2):323–341, 2005.

[39] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan. Analyzing and
automatically labelling the types of user issues that are raised in mobile
app reviews. Empirical Software Engineering, 21(3):1067–1106, 2016.

[40] T. M. Mitchell et al. Machine learning. 1997.
[41] D. Mukherjee and G. Ruhe. Analysis of compatibility in open source

android mobile apps. In 2020 IEEE Seventh International Workshop
on Artificial Intelligence for Requirements Engineering (AIRE), pages
70–78. IEEE, 2020.

[42] P. Munjal, M. Narula, S. Kumar, and H. Banati. Twitter sentiments
based suggestive framework to predict trends. Journal of Statistics and
Management Systems, 21(4):685–693, 2018.

[43] A. Natekin and A. Knoll. Gradient boosting machines, a tutorial.
Frontiers in neurorobotics, 7:21, 2013.

[44] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia. User reviews matter! tracking
crowdsourced reviews to support evolution of successful apps. In 2015
IEEE international conference on software maintenance and evolution
(ICSME), pages 291–300. IEEE, 2015.

[45] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall. How can i improve my app? classifying user reviews
for software maintenance and evolution. In 2015 IEEE international
conference on software maintenance and evolution (ICSME), pages 281–
290. IEEE, 2015.

[46] L. Pelloni, G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and
H. C. Gall. Becloma: Augmenting stack traces with user review
information. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 522–526. IEEE,
2018.

[47] C. Power, A. Freire, H. Petrie, and D. Swallow. Guidelines are only
half of the story: accessibility problems encountered by blind users on

245

Authorized licensed use limited to: University of North Texas. Downloaded on February 26,2022 at 08:12:40 UTC from IEEE Xplore. Restrictions apply.

the web. In Proceedings of the SIGCHI conference on human factors
in computing systems, pages 433–442, 2012.

[48] R. D. Raizada and Y.-S. Lee. Smoothness without smoothing: why
gaussian naive bayes is not naive for multi-subject searchlight studies.
PloS one, 8(7):e69566, 2013.

[49] J. Ratzinger, T. Sigmund, and H. C. Gall. On the relation of refactorings
and software defect prediction. In Proceedings of the 2008 international
working conference on Mining software repositories, pages 35–38, 2008.

[50] F. Rustam, M. Khalid, W. Aslam, V. Rupapara, A. Mehmood, and G. S.
Choi. A performance comparison of supervised machine learning models
for covid-19 tweets sentiment analysis. Plos one, 16(2):e0245909, 2021.

[51] N. Safdari, H. Alrubaye, W. Aljedaani, B. B. Baez, A. DiStasi, and
M. W. Mkaouer. Learning to rank faulty source files for dependent bug
reports. In Big Data: Learning, Analytics, and Applications, volume
10989, page 109890B. International Society for Optics and Photonics,
2019.

[52] A. L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of research and development, 3(3):210–229,
1959.

[53] N. Seyff, F. Graf, and N. Maiden. Using mobile re tools to give end-
users their own voice. In 2010 18th IEEE International Requirements
Engineering Conference, pages 37–46. IEEE, 2010.

[54] S. Vijayarani, R. Janani, et al. Text mining: open source tokenization
tools-an analysis. Advanced Computational Intelligence: An Interna-
tional Journal (ACII), 3(1):37–47, 2016.

[55] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen. Mining user
opinions in mobile app reviews: A keyword-based approach. arXiv
preprint arXiv:1505.04657, 2015.

[56] W3C. Web content accessibility guidelines (wcag) 2.1. https://www.w3.
org/TR/WCAG21/, June 2021.

[57] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip, et al. Top 10 algorithms in data
mining. Knowledge and information systems, 14(1):1–37, 2008.

[58] S. Yan and P. Ramachandran. The current status of accessibility in
mobile apps. ACM Transactions on Accessible Computing (TACCESS),
12(1):1–31, 2019.

[59] X. Ye, Y. Zheng, W. Aljedaani, and M. W. Mkaouer. Recommending pull
request reviewers based on code changes. Soft Computing, 25(7):5619–
5632, 2021.

[60] B. Yu. An evaluation of text classification methods for literary study.
Literary and Linguistic Computing, 23(3):327–343, 2008.

[61] Y. Zhao, L. Gong, B. Zhou, Y. Huang, and C. Liu. Detecting tomatoes in
greenhouse scenes by combining adaboost classifier and colour analysis.
Biosystems Engineering, 148:127–137, 2016.

246

Authorized licensed use limited to: University of North Texas. Downloaded on February 26,2022 at 08:12:40 UTC from IEEE Xplore. Restrictions apply.

