
Automatic Classification of Accessibility User Reviews in

Android Apps

Wajdi Aljedaani∗, Mohamed Wiem Mkaouer†, Stephanie Ludi ∗, and Yasir Javed ‡
∗University of North Texas. Email{wajdi.aljedaani, Stephanie.Ludi@unt.edu}

†Rochester Institute of Technology. Email{mwmvse@rit.edu}
‡Prince Sultan University. Email{yjaved@psu.edu.sa}

Abstract—In recent years, mobile applications have gained
popularity for providing information, digital services, and content
to users including users with disabilities. However, recent studies
have shown that even popular mobile apps are facing issues
related to accessibility, which hinders their usability experience
for people with disabilities. For discovering these issues in the
new app releases, developers consider user reviews published
on the official app stores. However, it is a challenging and
time-consuming task to identify the type of accessibility-related
reviews manually. Therefore, in this study, we have used super-
vised learning techniques, namely, Extra Tree Classifier (ETC),
Random Forest, Support Vector Classification, Decision Tree, K-
Nearest Neighbors (KNN), and Logistic Regression for automated
classification of 2,663 Android app reviews based on four types
of accessibility guidelines, i.e., Principles, Audio/Images, Design
and Focus. Results have shown that the ETC classifier produces
the best results in the automated classification of accessibility
app reviews with 93% accuracy.

Index Terms—Mobile Applications, User Reviews, Accessibil-
ity, Android, Machine Learning.

I. INTRODUCTION

Many users find it challenging to get complete benefit from

mobile applications (apps) having poor accessibility [27], [4],

[24], [23]. To address this challenge, researchers have offered

variety of methodologies, techniques, frameworks, tools, and

guidelines to guide the development of building mobile ap-

plications with better accessibility[21]. It is unfortunate that,

due to a lack of understanding or resources (e.g., funding

and time), many mobile application developers and designers

continue to neglect to include accessibility in their mobile

app development process [22]. In this paper, we seek to

develop a multi-class method that can help app developers

to distinguish between the type of accessibility user reviews

easily. The proposed method will automatically classify user

reviews derived from app stores, such as Google Play1, and

Apple Appstore2, into the accessibility type based on the

accessibility guideline [6].

There are many challenges with detecting accessibility

related to user reviews. One of the most common ways of

improving applications is by analyzing the feedback given

by the users [9], [1], [18], [2]. In many cases, accessibility

user reviews for mobile applications are overlooked [12]. It

is vital to mention that accessibility user reviews can either

1https://play.google.com/store
2https://www.apple.com/ios/app-store/

be detected automatically or manually [12]. Given the large

number of app users’ reviews, manual identification becomes

more tedious and time-consuming, meaning that automatic

identification is often preferred. Automatic identification of

reviews means that the system looks for certain keywords in

the user reviews that relate to accessibility [12]. The British

Broadcasting Network (BBC) accessibility guidelines provide

the keywords used for automatic identification [6]. Although

automatic identification is convenient, its major disadvantage

is that it does not capture words in the user reviews that are

not in the accessibility guidelines. In addition, even when the

keywords are in a certain user review, it is not a guarantee

that the review concerns accessibility. In past studies [12],

researchers found phrases in user reviews with keywords from

the guidelines, which were not necessarily about accessibility.

Hence, researchers should be careful to consider the context of

the review so that identification will be effective. Such a chal-

lenge can be overcome by introducing learning capabilities,

which are trained to know the difference between accessibility

user reviews and those that are not, even if they seem similar.

Furthermore, not all accessibility problems uniformly occur,

and therefore, some accessibility violations tend to be more

frequent than others. This can potentially be another challenge

for any automated solution that tries to identify them, since

one category will be more popular (better represented by data)

than another.

To address the above-mentioned challenges, the goal of

this paper is to help developers automatically classify user

reviews, into what type of accessibility guidelines they are

referring to (Principles, Audio/Video, Design, Focus, Forms,

Images, Links, Notifications, Dyn.content, Structure, and Text

Equivalent). This will help developers quickly distinguish

accessibility related problems, and address them on a timely

manner.

To design our solution, we rely on supervised learning

techniques to effectively enable app developers to correctly

identify the underlying accessibility problem in the user re-

views. We analyze a corpus of user reviews, extracted from

open source apps [12] to extract accessibility problems. Since

our goal is to design a model that distinguished between

types of accessibility issues, we manually categorized the user

reviews based on accessibility guidelines [6]. Then, we employ

emerging machine learning techniques, known to perform

best in text classification [15], to know the features of the



Fig. 1: Overview approach of our study.

reviews that can help in their identification. Our proposed

approach gets acquainted with the keywords and patterns

that are unique to given type of accessibility guideline, and

transform them into features to identify a given class (type of

accessibility guideline). Determining unique features is crucial

for classification algorithms. The outcome of the algorithm

(labeled review) is important for app developers to understand

accessibility issues and improve on them.

Following are the key contributions of our research:

• We tackle the identification of accessibility user reviews

as a multi-class classification problem, where we analyze

the extent to which, machine learning models can accu-

rately distinguish between types of accessibility reviews.

• To handle the unbalance between the number of reviews

belonging to each category, we adopt the state-of-the-art

re-sampling technique SMOTE. This paper also show-

cases the potential of class re-balancing on supporting

the representation if minority classes (i.e., categories with

fewer reviews).

II. RELATED WORK

Accessibility in mobile applications is crucial to ensuring

that all users can benefit from them. Accessibility in mobile

applications is important in ensuring that all users are able to

make use of such apps. In this section, we divide into two

subsections: accessibility in user reviews; and text document

classification.

Accessibility in user reviews. Providing accessibility feed-

back on an app can help designers improve it [26], but many

people do not leave their reviews if they encounter app prob-

lems [12]. A study by Eler et al. has proven that only 1% of

mobile app users leave feedback if the app has an accessibility

issue [12]. The study, which utilized 214,053 mobile app

reviews, had only 2,663 related to accessibility [12]. Given that

app development can be significantly improved by analyzing

user reviews. We will seek to develop a method that can help

distinguish between accessibility types in user reviews. Such

an undertaking is significant because developers can easily use

the technique to select user reviews related to non-accessibility,

analyze them, and utilize them to make better apps that can

compete favorably in the market. We will be developing our

method using the dataset produced by Eler et al. in this study.

Text documents classification. Different approaches have

been developed to classify reviews, depending on the re-

searchers’ objective. While some methods seek to classify

reviews according to bug reports, others focus on complaints

or address future feature requests. It is prudent to note that

most of them fail to address accessibility. The use of redefined

keywords to classify reviews is an improvement from the

automatic classification method. Previous studies by Eler et

al. used 213 keywords [12], while Ratzinger et al. utilized

13 keywords to analyze user reviews. Our previous study

[3] utilized machine learning to classify reviews into either

accessibility or non-accessibility, but it only performs binary

classification. In this study, we develop machine learning

algorithms to classify the type of accessibility in user review.

III. STUDY DESIGN

This section describes the proposed method to classify the

type of accessibility in review on the selected dataset. Figure 1

presents an overview approach of our study.

A. Step (1): User Reviews Collection

In this study, we used a corpus of user reviews, collected

from various popular open source projects [12]. These reviews

are collected from thousands of users from all over the globe.

The dataset contains 2,663 reviews that have been manually

inspected for containing a problem related to accessibility.

The reviews were gathered from 701 Android applications,

belonging to 15 different categories, as shown in Table II.

B. Step (2): User Reviews Labeling

We need to categorize the dataset based on the mobile

accessibility guideline [6]. To do so, two authors performed

the manual categorization of all user reviews in the dataset.

The process of categorizing was spread across seven days to

prevent human fatigue. The authors were also provided with

the chance to search online for unfamiliar keywords during

labeling. After the authors finished the manual categorizing

procedure, the dataset was validated using the process of Levin



TABLE I: Summary of accessibility guidelines with corresponding description, relevant keywords, and number of labelled

reviews. We followed the BBC standards and guidelines for mobile accessibility [6].
Guideline Description Relevant Keywords # of Labelled Reviews

These guidelines require a focus on three principles of developing usable and inclusive applications. Accessibility, disability, operable,
Principles First, developers should utilize all web standards as required. Secondly, there should be utilization of screen reader, blind 664

interact controls. Thirdly, content and functionality in the app should support native features of the app. talkback, , impaired, impairment

Applications should provide alternative formats such as transcripts, sign language, or subtitles. Autoplay Subtitle, sign language, transcript,
Audio/video should be disabled, and the user should be provided with play/pause/stop or mute buttons to control audio description, autoplay, mute, 311

audio. There should be no conflict between audio in application media of native assistive technology. volume, can’t hear

The color in the app background should have appropriate contrast, and touch targets must be large Contrast, background color, flicker,
Design enough to be touched effectively. Visible state change should be experienced in every item in the app font size, visual cue, dark/light mode, 1,328

that has been focused on. Unnecessary or frequent flickering of content must be avoided. eyestrain, seizure, can’t see, overlap

There should be a logical organization of items, and users should be offered alternative input methods. Focusable, control focus, focus,
Focus Interactive and inactive elements should be focusable and non-focusable, respectively. Keyboard traps keyboard trap, navigable, order, 122

should be eliminated, and focus should not change suddenly when the app is utilized. input/type
Forms Every form of control must have a label. All labels must have a logical grouping, and a default input Unique label, missing label,

format must be given. Labels should be close to their form controls. layout, voice-over, visible label 53
Images Text images should not be included. Any background images that have content should have another Image of text, hidden text,

accessible alternative. background image, text alternative 86
Any navigation links must indicate the function of the link. If a link to an alternative format is clicked, Link description, unique desc.,

Links the user should be notified of the redirection to the alternative. Several links that redirect to the same duplicate link, alternative format 35
sourceshould be put together in one link.

Notifications Error messages should be clear. Any notifications given must be easily seen or heard. There should be Operating inclusive, vibration, feedback,
standard system notifications where necessary. alert dialog, understandable, unfamiliar 49
Applications should be made in a progressive manner that enables every user to benefit from them. Animated content, page refresh,

Dyn. content Appropriate notifications should be given for automatic page refreshes. Flexible interaction input automatic, refresh, timeout, 15
control must be given. adaptable, input sign

Every page on the application should be uniquely identified. Content should be arranged in a Page title, screen title, heading,
Structure hierarchical and logical manner with appropriate headings. One accessible component should be used header, unique descriptive 0

to group interface objects, controls or elements.

Applications should give the objective of a specific image or its editorial aim. Also, visual formatting Alternative text, non-visual,
Text must be complemented by other ways to give meaning. There should be no conflict between decorative content description, decorative 0

equivalent images with assistive technology. Every element must have well-placed and effective a11y properties. content, no-text-content

et al. [17] by randomly choosing 9% sample of accessibility

reviews. The sample size was 243 out of the 2,663 accessibility

reviews. This number is about equivalent to the size of the

sample based on a 95% confidence level with a 6 confidence

interval. Following that, the third author categorized them. The

chosen reviews were not exposed to the author before. Then,

the categorical reviews were evaluated using Cohen’s Kappa

coefficient [10] with respect to inter-rater agreement level, and

the “0.87” agreement level was attained. As per Fleiss et al.

[13], (i.e., 0.87–1.00) are perfect values for agreement, and

our agreement values are considered nearly perfect agreement.
Table I presents the accessibility guidelines and the distribution

of the categorized user reviews per guideline.

TABLE II: Statistics of the dataset.
Number of Apps 701
App Categories 15

All Reviews 214,053
Accessibility Reviews 2,663

C. Step (3): Data Preprocessing

We used a textual preprocessing strategy after finishing

the process of collecting data. It is vital to preprocess and

clean the document adequately so a model can execute text

categorization successfully. In our method, we combined NLP

methods employing the NLTK python (Natural Language

Toolkit) to preprocess the reviews of the app. Among the

techniques based on NLP are:

• Tokenization: This technique involves splitting natural

texts into tokens without any white space throughout

this procedure. Tokenizing app reviews involves breaking

them down into constituent words set.

• Lemmatization: Throughout this procedure, a word’s

suffix is replaced or removed so it’s basic form can be

obtained. It also lowers the unique occurrence’s’ count

of words that are similar. This approach is used in

the suggested strategy for word pre-processing in their

canonical format in order to limit the unique occurrences

count of identical text tokens.

• Stop-Word Exclusion: Stop-words are words that do not

assist to the process of classification, such as the, am, and

so on.

• Case Normalization: Because precise words having var-

ious font cases must be treated in a similar way, such as

”accessibility” & ”Accessibility,” the entire text must be

converted to lowercase letters. It is commonly referred

to as data cleansing because it aids in minimizing the

repetition of similar features that vary only in regards

to case sensitivity. A person might identify himself as

”Deaf” using a capital letter ’D’ with in setting of reviews

related to accessibility to convey his cultural background

with in reviews. Because we have multi-class classifier,

the classification outcome for ”deaf” and ”Deaf would be

identical, and case normalization would be secure, there

would be no overruling of expressions by the user.

• Noise Removal: This stage removes any noise that

could degrade performance of the classification or cause

the model to become confused during learning. Special

characters, numeric data, email id, are examples of noise

types deleted in this phase.

D. Step (4): Feature Engineering

Feature engineering helps the model learn patterns for each

class it is trying to distinguish, through allocating appropriate

unique key words that appear specifically for one category.

We intend to train our model and find these unique keywords

and use them as features to properly distinguish between

classes. The following is feature engineering method that was

employed in this study:

1) TF-IDF: is among the most commonly employed scor-

ing metrics for summarization and information retrieval. It is



utilized to convey the significance of the term within each

text. The TF-IDF extraction function takes two inputs: IDF

and TF. TF-IDF provides tokens that seem to be uncommon

within the dataset. When uncommon words appear in multiple

documents, their relevance grows.

tfidft,d,D = tft,d · idft,D (1)

where t denotes terms, d denotes each document, and D
is the documents set. The parameter, n-gram range, is used

in conjunction with TF-IDF. TF-IDF is used to compute

word weights, which offer corpus weights for any given the

word. The weighted word matrix is the output. Using TF-

IDF vectorizer, an increase within meaning is proportionate

of the count, although word frequency in the corpus assists

in controlling it. The TF approach is frequently explored

for extracting features and therefore is widely utilized for

text categorization. During classifier training, the incidence

frequency of terms’ is used as a parameter. TF function doesn’t

quite take into account the popularity of a word, contrasting

the TF-IDF, which gives less weight to more frequent terms.

E. Step (5): Data Re-Sampling

Imbalanced dataset issues and problems can be resolved

through methods of data re-sampling. The problem that can

arise in an imbalanced dataset is that it has an uneven ratio

of the target classes, which results in the models over-fitting

on the majority class during classification [19]. For this, the

technique and strategy for re-sampling the dataset have been

proposed. Throughout this study, the technique on re-sampling

that has been utilized is over-sampling.

1) Synthetic Minority Over-Sampling Technique (SMOTE):
In over-sampling, the sample of the class that is a minority

increased in the ratio of the majority class. This enlarges

the size of the dataset and provides more features that can

train the model and improve its accuracy. Over-sampling

is implemented in this research using SMOTE, known as

the synthetic minority over-sampling technique. SMOTE is a

modern approach and was presented in [8] to figure out how

over-fitting in the imbalanced dataset could be overcome. It

selects the smaller class at random and locates the K-nearest

neighbors for each of these classes. The K-nearest neighbor

is used to analyze the samples that are chosen to create a

new minority class. Figure 2 shows the distribution of the

accessibility reviews before and after using SMOTE.
TABLE III: Summary of performance measures, formulas, and

definitions.
Measures Formula Definition
Accuracy TP+TN

TP+TN+FP+FN
Calculates the closeness of a measured value to the

standard value.

Recall TP
TP+FN

Calculates the exact number of positive predictions

that are actually observed in the actual class.

Precision TP
TP+FP

Calculates the exact no. of correct predictions

out of all the input sample.

F1-score 2·P ·R
P+R

Calculates the accuracy from the precision and recall.

F. Step (6): Model Selection

In order to build our model, we used the following six

learning algorithms:

Principles Audio/Video Design Focus

500

1,000

1,500

2,000

662

311

1,328

122

1,328 1,328 1,328 1,328

Before After

Fig. 2: Distribution of reviews before and after SMOTE.

• Random Forest (RF): is a tree-based classifier that

constructs a large number of classification trees. Each

tree gives a distinct classification [5]. RF selects the

classification with the most votes out of all possible trees

to classify a new item.

• Support Vector Classification (SVC): is a well-known

machine learning classifier for tackling linear & non-

linear issues. It’s suitable for a variety of practical ap-

plications [25]. SVC generates a hyperplane or line that

splits the data in the section. Higher-dimensional space

is obtained by transforming low dimensional input space

using the Kernel function; this process changes non-

separable problems into separable problems. It primarily

aids in the resolving of non-linear differential issues. SVC

divides the data into categories according to labels.

• Decision Tree (DT): learns basic decision rules to fore-

cast the class. DT utilized node and leaf by descending

from the root and utilizing the sum of product represen-

tation [7].

• K-Nearest Neighbors (KNN): Identifies the similarities

between new and existing samples and assigns the new

data to a group with a high degree of similarity [11]. The

similarity between both the new data and the existing

classifications is determined by computing the distance

between the two sets of data.

• Logistic Regression (LR): is a statistical model which is

similar to linear regression and based on the probability

concept. By fitting data to something like a logistic

function, LR predicts the likelihood of the events.

• Extra Tree Classifier (ETC): is a collection of classifi-

cation algorithms teaching method in which the results of

numerous de-correlated random forests gathered within a

”forest” gets merged to provide identifications’ outcomes.

We chose these algorithms because they are commonly used

for a variety of classification issues [20], [28], and they are

able to operate effectively with imbalance datasets and NLP

in the literature [14], [16].

G. Step (7): Model Evaluation

The four assessment aspects indicated in Table III below

are used to evaluate the performance of our chosen models:

• True Positive (TP): Parameter determines positive pre-

dictions identified accurately using the classifier.



TABLE IV: Detailed classification metrics (Accuracy, Precision, Recall, and F1-Score) of each classifier with TF-IDF feature.
Random Forest (RF) Support Vector Classification (SVC) Decision Tree (DT)

Category Precision Recall F1 Category Precision Recall F1 Category Precision Recall F1
Principle 0.89 0.88 0.89 Principle 0.88 0.86 0.87 Principle 0.90 0.69 0.78

Audio/Video 0.94 0.97 0.96 Audio/Video 0.95 0.98 0.96 Audio/Video 0.94 0.91 0.92
Design 0.87 0.84 0.85 Design 0.85 0.82 0.84 Design 0.63 0.85 0.72
Focus 0.97 0.98 0.97 Focus 0.95 0.98 0.96 Focus 0.89 0.83 0.86

Average F1 0.92 0.92 0.92 Average F1 0.91 0.91 0.91 Average F1 0.84 0.82 0.82

K-Nearest Neighbors (KNN) Logistic Regression (LR) Extra Tree Classifier (ETC)
Category Precision Recall F1 Category Precision Recall F1 Category Precision Recall F1
Principle 0.50 0.99 0.66 Principle 0.88 0.86 0.87 Principle 0.92 0.89 0.90

Audio/Video 0.98 0.92 0.95 Audio/Video 0.94 0.98 0.96 Audio/Video 0.94 1.00 0.97
Design 1.00 0.03 0.05 Design 0.84 0.82 0.83 Design 0.89 0.85 0.87
Focus 0.97 0.97 0.97 Focus 0.95 0.97 0.96 Focus 0.97 0.99 0.98

Average F1 0.86 0.73 0.66 Average F1 0.90 0.91 0.90 Average F1 0.93 0.93 0.93

• True Negative (TN): Parameter determines whether or

not the classifier accurately labels negative predictions.

• False Positive (FP): Parameter determines the quantity

of negative cases incorrectly assumed to be positive via

the classifier.

• False Negative (FN): Parameter determines the quantity

of positive instances that the classifier incorrectly inter-

prets as the negative instances.

IV. STUDY RESULTS

RQ1: To what extent can machine learning models accu-
rately distinguish different types of accessibility reviews?

In this study, we have used six models, namely, Extra Tree

Classifier (ETC), Random Forest (RF), Support Vector Clas-

sification (SVC), Decision Tree (DT), K-Nearest Neighbors

(KNN), and Logistic Regression (LR) for automated classifi-

cation of accessibility app reviews in four different categories.

These categories include Principle, Audi/Video, Design, and

Focus. Four metrics, i.e., Accuracy, Precision, Recall, and F1-

Score, along with TF-IDF features, are employed for each

classifier. The results of detailed classification metrics of each

classifier with TF-IDF features are presented in Table IV.

In the case of RF and ETC, the Focus category achieves the

highest recall, accuracy, and F1-Score. In the case of RF and

ETC, the highest recall, precision, and F1-Score are obtained

in the Focus category. SVC classifier exhibits the same trend in

Audio/Video and Focus category while DT classifier performs

the best result in Audi/Video category. KNN classifier outputs

the highest precision in the Design category, while the Focus

category produces the highest recall and F1-score. Lastly,

LR gives the highest precision in the Focus category, recall

in Audio/Video, and the same F1-score in the Audio/Video

and Focus category. Overall, the highest precision (1.00) is

achieved by KNN in the Design category, and the highest

recall (1.00) in the Audio/Video category and F1-Score (0.98)

in the Focus category is achieved by ETC. The ETC classifier

obtained the highest average F1-score (0.93), while KNN

showed the lowest average F1-score (0.66). It can be seen that

classifiers have performed well in the Audio/Video, Design,

and Focus categories, whereas the lowest results are obtained

in the Principle category.

RF SVC DT KNN LR ETC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0.92 0.91

0.81

0.73

0.9
0.93

Fig. 3: Comparison of accuracy of all models.

V. DISCUSSION

We chose the four categories/guidelines (principles, au-

dio/video, design, and focus) because they are well-

represented, and we know that choosing the others would

result in under-representation and an inability to categorize

them accurately. At the same time, this is acceptable since

the four chosen categories are popular categories that most

accessibility user reviews will fit. As a result, the fact that

we did not categorize all categories is a limitation. However,

we believe that we have captured the primary categories of

interest to developers. From the findings of this research, this

section presents a discussion of the study takeaways.

Takeaway 1- App reviews represent a valuable source
of information which once gathered can give detailed
problems related to the accessibility of the mobile app:
Accessibility guidelines are numerous, and mobile app de-

signers and developers are in shortage of tools to prevent

their appearance. In addition, observing all these guidelines

does not always warrant accessibility to the app. Moreover, it

is often impractical to undertake usability testing with users

with disabilities, e.g., deaf or blind users. A key gap that

is not addressed by existing research and testing approaches

is listening to user reviews and evaluating them. This new

approach is valuable and practical as it allows developers to

identify accessibility problems with the app in question.

Takeaway 2- Improving accessibility testing: The current



approaches and strategies for accessibility testing are mainly

manual. As a result, developers spend a considerable amount

of time and cost in identifying the most appropriate people

to test their apps on how well they adhere to accessibility

guidelines. Accessibility scanners are already available in the

market. However, they are only fit for the web and not the

mobile environment. In light of this challenge, online user

reviews offer new possibilities in capturing anomalies with

the app from a more practical perspective. Using the reviews

enables developers to identify test cases they wish to undertake

in case of app upgrades. In addition, given the dynamic nature

of the mobile environment, recent user reviews can indicate

any new anomalies in the recently released apps.

VI. CONCLUSION

This study presented an automated approach for classifying

accessibility app reviews in four categories, i.e., Principles,

Audio/Video, Design, and Focus, for helping the developers

detect app issues and performance improvement by consider-

ing user reviews. An existing dataset that comprises manually

validated accessibility app reviews has been employed in our

work. We employed six classification models, namely Extra

Tree Classifier, Random Forest, Support Vector Classification,

Decision Tree, K-Nearest Neighbors, and Logistic Regression.

To evaluate their performance, we used four classification

metrics, i.e., Accuracy, Precision, Recall, and F1-Score for

measuring their performance. Evaluation results have shown

that KNN exhibits the least accuracy while the ETC model

outperformed other models in overall accuracy with TF-IDF

features. In the future, we intend to increase the keywords

and sample size to improve the selection and analysis process

of accessibility reviews and provide a mechanism to check

whether the developers have addressed the users’ concerns

in the subsequent releases by implementing the required

features.

REFERENCES

[1] W. Aljedaani and Y. Javed. Bug reports evolution in open source
systems. In 5th International Symposium on Data Mining Applications,
pages 63–73. Springer, 2018.

[2] W. Aljedaani, M. Nagappan, B. Adams, and M. Godfrey. A comparison
of bugs across the ios and android platforms of two open source cross
platform browser apps. In 2019 IEEE/ACM 6th International Conference
on Mobile Software Engineering and Systems (MOBILESoft), pages 76–
86. IEEE, 2019.

[3] E. A. AlOmar, W. Aljedaani, M. Tamjeed, M. W. Mkaouer, and Y. N. El-
Glaly. Finding the needle in a haystack: On the automatic identification
of accessibility user reviews. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, pages 1–15, 2021.

[4] A. Alshayban, I. Ahmed, and S. Malek. Accessibility issues in android
apps: state of affairs, sentiments, and ways forward. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), pages
1323–1334. IEEE, 2020.

[5] A. Amaar, W. Aljedaani, F. Rustam, S. Ullah, V. Rupapara, and S. Ludi.
Detection of fake job postings by utilizing machine learning and natural
language processing approaches. Neural Processing Letters, pages 1–29,
2022.

[6] BBC. The BBC Standards and Guidelines for Mobile Accessibility,
2017.

[7] M. Brijain, R. Patel, M. Kushik, and K. Rana. A survey on decision
tree algorithm for classification. 2014.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial
intelligence research, 16:321–357, 2002.

[9] A. Ciurumelea, A. Schaufelbuhl, S. Panichella, and H. C. Gall. Analyz-
ing reviews and code of mobile apps for better release planning. In 2017
IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 91–102, Klagenfurt, Austria, Feb. 2017.
IEEE.

[10] J. Cohen. A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1):37–46, 1960.

[11] Z. Deng, X. Zhu, D. Cheng, M. Zong, and S. Zhang. Efficient knn
classification algorithm for big data. Neurocomputing, 195:143–148,
2016.

[12] M. M. Eler, L. Orlandin, and A. D. A. Oliveira. Do android app users
care about accessibility? an analysis of user reviews on the google
play store. In Proceedings of the 18th Brazilian Symposium on Human
Factors in Computing Systems, pages 1–11, 2019.

[13] J. L. Fleiss, B. Levin, M. C. Paik, et al. The measurement of
interrater agreement. Statistical methods for rates and proportions,
2(212-236):22–23, 1981.

[14] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera.
A review on ensembles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(4):463–
484, 2011.

[15] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes,
and D. Brown. Text classification algorithms: A survey. Information,
10(4):150, 2019.

[16] B. Krawczyk. Learning from imbalanced data: open challenges and
future directions. Progress in Artificial Intelligence, 5(4):221–232, 2016.

[17] S. Levin and A. Yehudai. Towards software analytics: Modeling
maintenance activities. arXiv preprint arXiv:1903.04909, 2019.

[18] X. Li, Z. Zhang, and K. Stefanidis. Mobile App Evolution Analysis
based on User Reviews. page 14, 2018.

[19] B. Omar, F. Rustam, A. Mehmood, G. S. Choi, et al. Minimizing the
overlapping degree to improve class-imbalanced learning under sparse
feature selection: application to fraud detection. IEEE Access, 9:28101–
28110, 2021.

[20] M. Owhadi-Kareshk, S. Nadi, and J. Rubin. Predicting merge conflicts
in collaborative software development. In 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1–11. IEEE, 2019.

[21] K. Park, T. Goh, and H.-J. So. Toward accessible mobile application
design: Developing mobile application accessibility guidelines for peo-
ple with visual impairment. In Proceedings of HCI Korea, HCIK ’15,
page 31–38, Seoul, KOR, 2014. Hanbit Media, Inc.

[22] R. Patel, P. Breton, C. M. Baker, Y. N. El-Glaly, and K. Shinohara.
Why software is not accessible: Technology professionals’ perspectives
and challenges. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems, pages 1–9, 2020.

[23] A. Rodrigues, H. Nicolau, K. Montague, J. Guerreiro, and T. Guerreiro.
Open challenges of blind people using smartphones. International
Journal of Human–Computer Interaction, 36(17):1605–1622, 2020.

[24] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock. Examining
image-based button labeling for accessibility in android apps through
large-scale analysis. In Proceedings of the 20th International ACM
SIGACCESS Conference on Computers and Accessibility, ASSETS ’18,
page 119–130, New York, NY, USA, 2018. Association for Computing
Machinery.

[25] N. Safdari, H. Alrubaye, W. Aljedaani, B. B. Baez, A. DiStasi, and
M. W. Mkaouer. Learning to rank faulty source files for dependent bug
reports. In Big Data: Learning, Analytics, and Applications, volume
10989, page 109890B. International Society for Optics and Photonics,
2019.

[26] S. Yan and P. Ramachandran. The current status of accessibility in
mobile apps. ACM Transactions on Accessible Computing (TACCESS),
12(1):1–31, 2019.

[27] S. Yan and P. G. Ramachandran. The Current Status of Accessibility in
Mobile Apps. ACM Transactions on Accessible Computing, 12(1):1–31,
Feb. 2019.

[28] Y. Zhou and A. Sharma. Automated identification of security issues from
commit messages and bug reports. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 914–919, 2017.


