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ABSTRACT
In recent years, mobile accessibility has become an important trend
with the goal of allowing all users the possibility of using any app
without many limitations. User reviews include insights that are
useful for app evolution. However, with the increase in the amount
of received reviews, manually analyzing them is tedious and time-
consuming, especially when searching for accessibility reviews.
The goal of this paper is to support the automated identification
of accessibility in user reviews, to help technology professionals
in prioritizing their handling, and thus, creating more inclusive
apps. Particularly, we design a model that takes as input accessibil-
ity user reviews, learns their keyword-based features, in order to
make a binary decision, for a given review, on whether it is about
accessibility or not. The model is evaluated using a total of 5,326
mobile app reviews. The findings show that (1) our model can accu-
rately identify accessibility reviews, outperforming two baselines,
namely keyword-based detector and a random classifier; (2) our
model achieves an accuracy of 85% with relatively small training
dataset; however, the accuracy improves as we increase the size of
the training dataset.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in acces-
sibility; Ubiquitous and mobile devices.
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1 INTRODUCTION
Many mobile applications (apps) have poor accessibility which
makes it difficult for people with disabilities to use such apps
[5, 53, 55, 71]. Researchers presented several methods, tools, frame-
works, and guidelines to support developers in creating accessible
mobile applications [9, 11, 19, 47, 54, 64]. However, many software
developers and designers still do not incorporate accessibility into
their software development process due to lack of awareness or
lack of resources, e.g., budget and time, [15, 48, 51]. In this paper,
we present a method that can help software developers to quickly
become aware of specific accessibility problems with their apps
that the users encountered. Our method is based on automatically
identifying app reviews that users write on app stores, e.g., App
Store1, Google Play2 and Amazon Appstore3, where these reviews
express an accessibility-related feedback.

Analyzing app reviews was used by technology professionals
to identify issues with their mobile apps [12, 37, 39]. However, ac-
cessibility in user reviews is rarely studied especially for mobile
applications [18]. Identifying accessibility-related reviews is cur-
rently done using two main methods: manual identification and
automatic detection [18]. The manual identification approach is
time consuming especially with the vast number of reviews that
users upload to the app stores, and so it becomes impractical. The
automated detection method employs a string-matching technique
as a predefined set of keywords are searched for in the app reviews
[18]. These keywords were extracted from the British Broadcasting
Corporation (BBC) recommendations for mobile accessibility [10].
While this method sounds more practical than the manual one,
it has its own drawbacks: the string-matching technique ignores
that keywords derived from guidelines do not necessarily match
the words expressed in reviews posted by users. This mismatch
includes but not limited to situations when the keywords are incor-
rectly spelled by users. More importantly, the presence of certain
keywords in a review does not necessarily mean that the review
is about accessibility. For example, consider the following reviews
from Eler et al. dataset [18]:
1https://www.apple.com/ios/app-store/
2https://play.google.com/store
3https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
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“This is the closest game to my old 2001 Kyocera 2235’s
inbuilt game ’Cavern crawler’. Everything is so simple
and easy to comprehend but that doesn’t mean that it
is easy to complete right off of the bat. Going into the
sewers almost literally blind (sight and knowledge of
goods in inventory) is a great touch too. Keep at it. I’ll
support you at least in donations.”

This review contains a set of keywords that could indicate acces-
sibility (e.g., “old”, “blind” and “sight”) but it is not an accessibility
review. In this review, the word “old” refers to a device rather than a
person. The words “blind” and “sight” refer to knowledge of goods
in the game rather than describing a player’s vision. Therefore, the
discovery of accessibility reviews heavily relies on the context, and
so, simply searching for their existence in the review text is inef-
ficient. Due to the overhead of the manual identification, and the
high false-positiveness of the automated detection, these two meth-
ods remain impractical for developers to use, and so, accessibility
reviews remain hard to identify and to prioritize for correction. To
address this challenge, it is critical to design a solution with learning
capabilities, which can take a set of examples that are known to
be accessibility reviews, and another set of examples that are not
about accessibility but do contain accessibility-related keywords,
and learn how to distinguish between them. Therefore, in this paper,
we use supervised learning to formulate the identification of
accessibility reviews as a binary classification problem. This
model takes a set of accessibility reviews, obtained by manual
inspection, in a previous study [18] as input, we deploy state-of-
the-art, machine learning models to learn the features, i.e., textual
patterns that are representative of accessibility reviews. In contrast
to relying on words derived from guidelines, our solution extracts
features (i.e., words and patterns) from actual user reviews and
learns from them. This is critical because there is a semantic gap
between the guidelines, formally written on an abstract level, and
technology-specific keywords. By features, we refer to a keyword
or a set of keywords extracted from accessibility-related reviews
that are not only important for classification algorithms, but they
can also be useful for developers to understand accessibility-related
issues and features in their apps. The patterns can be about an app
feature that supports accessibility (e.g., “font customization”, “page
zooming” or “speed control”); about assistive technology (e.g., “word
prediction”, “text to speech” or “voice over”) as well as about disabil-
ity comments (e.g., “low vision”, “handicapped”, “deaf ” or “blind”).
Particularly, we addressed the following three research questions
in our study:

RQ1: To what extent machine learning models can accurately
distinguish accessibility reviews from non-accessibility reviews?
To answer this research question, we rely on a manually
curated dataset of 2,663 accessibility reviews, which we aug-
ment with another 2,663 non-accessibility reviews. Then
we perform a comparative study between state-of-the-art bi-
nary classification models, to identify the best model that can
properly detect accessibility reviews, from non-accessibility
reviews.

RQ2: How effective is our machine learning approach in identi-
fying accessibility reviews?

Opting for a complex solution, i.e., supervised learning, has
its own challenges, as models need to be trained, parameter
tuned, and maintained, etc. To justify our choice of such
solution, we compare the best performing model, from the
previous research question, with two baselines: the string-
matching method, and the random classifier. This research
question verifies whether a simpler solution can convey
competitive results.

RQ3: What is the size of the training dataset needed for the clas-
sification to effectively identify accessibility reviews?
In this research question, we empirically extract the mini-
mum number of training instances, i.e., accessibility reviews,
needed for our best performing model, to achieve its best
performance. Such information is useful for practitioners, to
estimate the amount of manual work needs to be done (i.e.,
preparation of training data) to design this solution.

We performed our experiments using a dataset of 5,326 user
reviews, provided by a previous study [18]. Our comparative study
has shown that the Boosted Decision Trees model (BDTs-model) has
the best performance among other 8 state-of-the-art models. Then,
we compared our BDTs-model, against two baselines: (1) string-
matching algorithm and (2) a random classifier. Our approach pro-
vided a significant improvement in the identification of accessibility
reviews, outperforming the baseline-1 (keyword-based detector) by
1.574 times, and surpassing the baseline-2 (random classifier) by
39.434 times.

The contributions of this paper are:
(1) We present an action research contribution that privileges

societal benefit through helping developers automatically
detect accessibility-related reviews and filter out irrelevant
reviews.Wemake ourmodel and datasets publicly available 4
for researchers to replicate and extend, and for practitioners
to use our web service and filter down their user reviews.

(2) We show that we need a relatively small dataset (i.e., 1500 re-
views) for training to achieve 85% or higher F1-Measure, out-
performing state-of-the-art string-matching methods. How-
ever, the F1-measure score improves as we add to the training
dataset.

2 RELATEDWORK
It is crucial that mobile applications be accessible to allow all in-
dividuals with different abilities to have fair access and equal op-
portunities [27]. Prior studies investigated the accessibility issues
raised in Android applications [5, 66], and others evaluated the
accessibility of various websites [1, 17, 30, 69]. To the best of our
knowledge, there is no study classifies user reviews in Android
applications using machine learning.

In this section, we highlight several previous works that pro-
foundly influenced our approach. We split the related works into
three sections: user review, which briefly highlights the role of user
reviews in app evolution; accessibility in user review, focuses partic-
ularly on detection of accessibility in user reviews; and classification
of text documents, where we focus on current approaches in the
classification of text such as user reviews by different taxonomies.

4https://smilevo.github.io/access/

https://smilevo.github.io/access/
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2.1 User Reviews
Many researchers concluded that reviews and ratings posted by
users on app store platforms can play an essential role in apps’ evo-
lution since most developers consider users’ reviews when working
on a new release [12, 37, 45, 49]. Maalej et al. [39] proposed to
consider user-input as first means of requirements elicitation in
software development. Similarly, Vu et al. [67] emphasized on the
role of users in software lifecycle by developing an approach to
identify useful information from users’ review. Moreover, Seyff et al.
[59] suggested continuous requirements elicitation from end-users’
feedback using mobile devices.

Considering the fact that user reviews can be a powerful driver
to mobile app evolution, we are looking into whether we can ef-
fectively detect accessibility reviews from users’ feedback. This is
important because in a highly competitive market, identifying ac-
cessibility issues from users’ reviews can help developers improve
their apps in order to attract more customers and provide better
services to users with different abilities.

2.2 Accessibility in User Reviews
Even though user reviews can be a robust tool to mobile apps evo-
lution, and that even mature apps have many trivial accessibility
issues [19, 71], only 1.24% of mobile app users report accessibility is-
sues to app stores [18]. In other words, 98.76% ofmobile app users do
not post accessibility issues in the form of reviews on app stores. In
an effort to find whether mobile app users post accessibility-related
issues to app stores, Eler et al. [18] investigated 214,053 mobile
app reviews using a string-matching approach. They depend on a
set of 213 keywords derived from 54 BBC recommendations [10]
proposed for mobile accessibility. In their work, they inspected
214,053 user reviews to identify reviews pertaining to accessibility.
Their approach classified a total of 5,076 reviews as accessibility re-
views. However, through a manual inspection later, the researchers
found that only 2,663 of the reviews were really about accessibility.
We used these 2,663 identified accessibility reviews as one of the
two groups in our training set required for a supervised machine
learning. We created the second group (i.e., non-accessibility re-
views) from their total dataset (i.e., 214,053). So far, this is one of
the preliminary studies related to the accessibility in mobile app
user reviews.

2.3 Classification of Text Documents
Many studies classify app reviews using different taxonomies [12,
16, 28, 41, 46, 49], for various purposes: detection of potential feature
requests, bug reports, complaints, and praises, etc. Even though
many of them identify reviews related to app usability, there is no
explicit mention to accessibility related issues [18].

Unlike automatic approaches, classification of text documents
using a set of predefined keywords has been vastly performed
across different domains in software engineering. For instance, Eler
et al. [18] relied on 213 keywords to identify accessibility-related
reviews. Strogylos and Spinelles [62] identified refactoring-related
commits using one keyword “refactor”. Similarly, Ratzinger et al.
[52] used 13 keywords to detect refactoring in commit messages.
Later, Murphy-Hill et al. [43] replicated Ratzinger’s work in two

open-source software using the 13 keywords Ratzinger used. How-
ever, they disproved the previous assumption that commit messages
in version history of programs are indicators of refactoring activ-
ities. The reasoning behind their findings is that developers do
not always report refactoring activities as they might associate
refactoring activities with other activities such as adding a feature.
AlOmar et al. [2] have also explored how developers document
their refactoring activities in commit messages using a variety of 87
textual patterns (i.e., keywords and phrases). Similarly, we believe
users can express accessibility concerns without explicitly using
any accessibility keywords from the BBC guidelines as assumed by
Eler et al. [18].

In contrast to the keyword-based approaches, we used an au-
tomated machine learning approach since learning approaches
outperform the accuracy of the keyword-based approach by at least
1.45 times [3, 40]. On the other hand, a keyword-based identification
approach (i.e., relying on an existing set of predefined keywords)
could generally miss certain reviews, not only because reviews left
by users might not always use those keywords to express an accessi-
bility concern, but also because a single word might not be enough
to convey an accessibility message. For example, the review “I hope
someday we change size of the fonts”; here the context provides an
accessibility concern even though the user is not explicitly using
keywords such as “disabled”, “blind” or “low vision”.

3 ACCESSIBILITY APP REVIEW
CLASSIFICATION

The main goal of this work is to automatically identify accessibility-
related reviews in a large dataset of app reviews. Our approach
takes a set of reviews as input and makes a binary decision on
whether the review is accessibility pertaining or not, i.e., classi-
fying app reviews (for simplicity we refer to them as accessibility
reviews and non-accessibility reviews). To be able to do so, we built
a classification model using a corpus of reviews and current classifi-
cation techniques. We then used the classification model to predict
types of new app reviews. Figure 1 provides an overview of the
process used in the detection of accessibility reviews. Our approach
follows five main steps:

(1) Data Collection: We used a dataset of app reviews along
with their ground truth categories previously identified through
manual inspection [18] as input for training purposes.

(2) Data Preparation: We applied data cleansing and text pre-
processing on this set to improve the reviews text for the
learning algorithms. Some of the text preprocessing proce-
dures we used are namely, tokenizing, lemmatizing, remov-
ing stop words, and removing capitalization.

(3) Feature Extraction: We used Feature Hashing [68] to ex-
tract features (i.e., words) from the preprocessed review text
to create a structured feature space.

(4) Model Selection and Tuning:We examined a total of nine
classification algorithms to evaluate the performance of the
model for prediction. These classifiers were chosen because
they are commonly used for classification of text such as app
reviews [28, 31]. After training and evaluating the model, we
used a testing dataset to challenge the performance of the
model. Since the model has already learned from the N-Gram
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Figure 1: Accessibility app review classification process.

vocabulary and their weights discussed in Section 3.3 from
the training dataset, the classifier output predicted-labels and
probability-scores for the testing dataset. Since an app review
is a plain text in our case, we follow the approach provided
by Kowsari et al. [33] that discusses trending techniques and
algorithms for text classification, similar to [3, 4].

(5) Model Evaluation: We built a training set using the ex-
tracted features for the model to learn from.

3.1 Data Collection
The dataset, used for this study, and shown in Table 1, is a col-
lection of these 2,663 accessibility reviews, manually validated by
Eler et al. [18]. The collected reviews are extracted from across 701
apps, belonging to 15 different categories, as shown in Figure 2.
This dataset excluded all apps under the Theming and System cate-
gories, since they usually do not have any interface associated with
them. Eler et al. [18] started with collecting 214,053 reviews, then
they performed the string-matching using 213 keywords to filter
down reviews and keep only those who potentially may contains
information related to accessibility. These keywords are derived
from 54 BBC recommendations proposed for mobile accessibility.
The string-matching reduced the reviews from 214,053 to 5,076
candidate accessibility reviews. However, the manual inspection of
these candidate reviews found that only 2,663 were true positives.

Table 1: Statistics of the dataset.
Number of Apps 701
App Categories 15
All Reviews 214,053

Accessibility Reviews 2,663

In order for us to verify the previous manual labeling of the
reviews, we followed the process of Levin et al. [36] and randomly

selected a 9% sample of reviews, i.e., 243 out of the 2,663 reviews.
This quantity roughly equates to a sample size with a confidence
level of 95% and a confidence interval of 6. Then we randomly added
another 243 non-accessibility reviews, to end up with a total of
486 reviews. Afterward, one researcher labeled them. The selected
data was not exposed to the researcher before. The review process
was given a period of 7 days, to avoid fatigue, and the researcher
had the opportunity to search online for any keywords they could
not understand, during the labeling process. Once the data was
labeled, we positioned our labeling against the original labeling of
the reviews, from the dataset. We used Cohen’s Kappa coefficient
[13] to evaluate the inter-rater agreement level for the categorical
classes. We achieved an agreement level of 0.82. According to Fleiss
et al. [21], these agreement values are considered to have an almost
perfect agreement (i.e., 0.81 − 1.00).

To prepare training data for the binary classification of app re-
views we created two groups of app reviews: (1) reviews indicating
accessibility and (2) reviews not related to accessibility. For the
accessibility reviews, we used the set of 2,663 reviews previously
identified and validated as accessibility reviews through manual
inspection by Eler et al. [18]. Since class starvation or an imbal-
anced training set (i.e., not having equal size of both groups) could
decrease the performance of a classification model [35, 36], we need
to select an equal number of non-accessibility reviews for the train-
ing. To efficiently train a classifier, it is important for the negative
set to be as close as possible to the positive set. Therefore, we chose
the negative set to be populated using the discarded reviews of
the original authors, during their manual process. These discarded
reviews tend to contain some keywords that are relevant to ac-
cessibility, but they were found to be conveying another meaning,
and that is what we want our model to learn. Since the subset of
discarded reviews was 2,413, we randomly selected reviews from
the Eler et al. [18] remaining reviews dataset, so that these reviews
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Figure 2: Distribution of accessibility reviews per app cate-
gory.

and that is what we want our model to learn. Since the subset of
discarded reviews was 2,413, we randomly selected reviews from
the Eler et al. [18] remaining reviews dataset, so that these reviews
are also extracted from the same apps, and most likely to contain
some keywords that overlap with our true positive set.

To decide on the number of reviews necessary for training pur-
poses, we reviewed the thresholds used in several text classification
studies. The highest number of text documents used in compara-
ble studies [3, 35, 36] was around 2000 text documents. Since our
goal was to provide the model with sufficient reviews that could
represent all possible accessibility topics, unlike existing works we
chose a total of 5,326 reviews for the model creation and validation.
However, we did evaluate our model with different sizes of training
sets to understand the size of the training set that yields the best
results. We report the results of our evaluations with regard to the
testing of different training sizes in Section 4.

3.2 Data Preparation
Upon completion of the data collection phase, we applied a common
approach explained in [33] for text preprocessing, similar to [3, 4].
For a model to classify text documents correctly, the text needs to be
cleaned and preprocessed. To preprocess the app reviews text, we
used natural language processing techniques, built-in the Microsoft
Azure [7], such as tokenizing, lemmatizing, removing stop words,
and removing capitalization.

Tokenization: is the process of splitting natural text data into
tokens, or meaningful elements, that contain no white space. We
tokenized app reviews by breaking them into their constituent set
of words.

Lemmatization: is the process of getting the basic form of a
word by either removing the suffix of a word or replacing the suffix
of a word with a different one. It is also the process of reducing
the number of unique occurrences of similar words. We used this
preprocessing technique to represent words in their canonical form

in order to reduce the number of unique occurrences of similar text
tokens.

Stop-Word Removal:We removed words such as (is, am, are,
if, for, the, etc.) that do not play any good role in classification.

Case Normalization: Since we wanted the same words with
different font cases (e.g., “Accessibility” and “accessibility”) to be
treated as the same word, we converted original review texts to
lower case. This type of text cleansing helps us avoid having re-
peated features differing only in the letter case. We realize that in
some cases a user can identify themselves as ‘Deaf’ with uppercase
‘D’ to express their cultural identity in their review which is differ-
ent from ‘deaf’. However, as our classifier is a binary classifier that
only distinguishes accessibility reviews from the rest, the words
‘Deaf’ and ‘deaf’ will yield the same classification result. Hence,
case normalization in this context is safe and will not overrule users’
expressions.

Noise Removal:We removed any noise that could deteriorate
classification performance and confuse the model when learning.
Examples of the noise we removed include removing special char-
acters, numbers, symbols, email addresses and URLs.

3.3 Feature Extraction
After cleansing and preprocessing the reviews text, we extracted
features from the preprocessed text that matter the most in dis-
tinguishing between the two classes in classification. Particularly,
we used the Feature Hashing technique for feature extraction.
Feature Hashing is a technique that operates on high-dimensional
text documents used as input in a machine learning model, to map
string values directly into encoded features and represent them as
integers [60, 68]. This technique helps to reduce dimensionality
and to make the feature weights lookup more efficient. Internally,
the Feature Hashing technique creates a dictionary of N-Grams.
We used bigrams in our classification since it greatly improves the
performance of text classification [63]. Generally, N-Grams have
more meaning and semantic than isolated words. For example, the
word “font” does not provide enough information by itself. How-
ever, when N-Gram features extracted from reviews, e.g., “small
font”, “font customization”, “font size”, etc., the word “font” can indi-
cate accessibility reviews. We discuss in details the features of our
model (i.e., keywords and bigrams) in Section 4. We used Mutual
Information filter-based feature selection. Mutual Information is a
technique that measure how much a variable contributes towards
reducing uncertainty about the value of another variable in order
to identify features with the greatest predictive power. In fact, this
feature set is the training set that the model learns from. In Figure
3, we illustrate how Feature Hashing applied to the text which was
being transformed to a dictionary, as well as the process of the
filter-based feature selection.

3.4 Model Selection and Tuning
Selecting an appropriate classifier for optimal classification is a
challenging task by itself [20]. In this study, we are tackling a two-
class classification problem as we are categorizing app reviews into
two groups, accessibility and non-accessibility. Because we already
have a predefined set of classes, our approach relies on supervised
machine learning algorithms to assign each review into one of the

Figure 2: Distribution of accessibility reviews per app cate-
gory.
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technique that measure how much a variable contributes towards
reducing uncertainty about the value of another variable in order
to identify features with the greatest predictive power. In fact, this
feature set is the training set that the model learns from. In Figure
3, we illustrate how Feature Hashing applied to the text which was
being transformed to a dictionary, as well as the process of the
filter-based feature selection.

3.4 Model Selection and Tuning
Selecting an appropriate classifier for optimal classification is a
challenging task by itself [20]. In this study, we are tackling a two-
class classification problem as we are categorizing app reviews into
two groups, accessibility and non-accessibility. Because we already
have a predefined set of classes, our approach relies on supervised
machine learning algorithms to assign each review into one of the
two categories. We tested nine different classification algorithms
as to see which one provides the best results in the context of
accessibility and app reviews classification. The tested classifiers are:
Logistic Regression (LR), Decision Forest (DF), Boosted Decision
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Figure 3: An example of feature hashing and feature selection process in feature extraction stage.

Tree (BDT), Neural Network (NN), Support Vector Machine (SVM),
Averaged Perceptron (AP), Bayes Point Machine (BPM), Decision
Jungle (DJ), and Locally Deep SVM (LD-SVM). We adopted these
classifier algorithms because they are commonly utilized in the
literature of software-related text classification [3, 23, 34, 38, 44, 72].
Below is a brief description of each of the classification algorithms
used in this study.

• Logistic Regression (LR)[6] is a linear classifiers that pre-
dicts the probability of an outcome by fitting data to a logistic
function.

• Decision Forest (DF)[50]: is a tree-based learner that builds
many classification trees. A specific classification is associ-
ated with each tree produces. To classify a new object, DF
chooses the classification that has the most votes over all
other trees.

• Boosting Decision Tree (BDT)[22]: is an ensemble learn-
ing method in which the second tree corrects for the errors of
the first tree, the third tree corrects for the errors of the first
and second trees, and so forth. Predictions are based on the
entire ensemble of trees together that makes the prediction.

• Neural Network (NN)[24]: is a set of interconnected layers.
The inputs are the first layer that are connected to an output
layer by an acyclic graph.

• Support Vector Machine (SVM) [70]: is a learner that con-
structs hyperplane(s) in n-dimensional space.

• Averaged Perceptron (AP)[14] is a simple version of Neu-
ral Network. The inputs are classified into several outputs
based on a linear function, and then combined with a set of
weights that are derived from the feature vector.

• Bayes PointMachine (BPM)[26]: is an algorithm that uses
a Bayesian approach to linear classification called the “Bayes
Point Machine”. This algorithm approximates the optimal
Bayesian average by choosing one “average” classifier, the
Bayes Point.

• Decision Jungle (DJ)[61]: is a recent extension to decision
forests. It consists of an ensemble of decision directed acyclic
graphs (DAGs).

• Locally Deep SVM (LD-SVM)[29]: is a classifier that has
been developed for an effencient non-linear SVM prediction.

We compared all the nine classifiers based on their common sta-
tistical measures such as precision, recall, accuracy, and F1-measure.
These experiments were performed on the Azure ML platform be-
cause it provides a built-in web service once the classification model
is deployed. We report the results of our classifier comparison and
evaluation in Section 4.

We use grid search cross validation [56], a tuning method that
performs exhaustive search over specified parameter values for
an estimator, for tuning of our selected ML models. In order to
facilitate the replication of our results, we provide the selected
main parameters for ML techniques as shown in Table 2.

3.5 Model Evaluation
We assess the performance of our selected models based on the
following four measurement aspects:

• Precision = tp
tp+f p : is a statistic that calculates the accurate

number of correct predictions out of all the input sample.
• Recall = tp

tp+f n : is a statistic that calculates the accurate
number of positive predictions that was actually observed
in the actual class.

• Accuracy = T P+T N
T P+T N+F P+FN : is a statistic that calculates the

accurate number of
• F1-measure = 2·P ·R

P+R : is a a statistic that calculates the accu-
racy from the precision and recall.

Here TP denotes True Positive, TN denotes True Negative, FP
denotes False Positive, and FN denotes False Negative. Thesemetrics
participation in measurement for a classifier’s output.

• True Positive (TP): This parameter determines the predic-
tions labeled correctly by the classifier as positive.

• TrueNegative (TN): This parameter determines the correct
number of negative predictions.

• False Positive (FP): This parameter determines the num-
ber of instances (negatives) that were presumed as positive
instances by the classifier by mistake.

• False Negative (FN): This parameter determines the num-
ber of positive instances that were falsely assumed to be as
negative instances by the classifier.
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Table 2: Summary of the hyperparameter in machine learning algorithm.

Classifier Hyperparameter Default Description

optimiz_tol 1E-07 Optimization tolerance
LR 1_weight 1 L1 regularization weight

L2_weight 1 L2 regularization weight
memory_L_BFGS 20 Memory size for L-BFGS
n_estimators 8 Number of decision trees

DF max_depth 32 Maximum depth of the decision trees
n_samples_leaf 125 Number of random splits per node
min_samples_split 1 Minimum number of samples per leaf node
max_n_leaf 20 Maximum number of leaves per tree

BDT min_samples_leaf 10 Minimum number of samples per leaf node
learning_rate 0.2 Learning rate
n_tree 100 Number of trees constructed
n_nodes 100 Number of hidden nodes
learning_rate 0.1 Learning rate

NN n_learning_rate 100 Number of learning iterations
learning_rate_weights 0.1 Initial learning weights diameter
momentum 0 Momentum
n_iter 1 Number of iterations

SVM Lambda 0.001 Lambda
learning_rate 1 Learning rate

AP m_iter 10 Maximum number of iterations
BPM n_training_iter 30 Number of training iterations

n_estimators 8 Number of decision directed acyclic graphs
DJ max_depth 32 Maximum depth of the decision directed acyclic graphs

max_width 128 Maximum of the decision directed acyclic graphs
n_optimiz 2048 Number of optimization steps per decision directed acyclic graphs layer
max_depth 3 Depth of the tree
lam_weight 0.1 Lambda weight

LD-SVM n_theta 0.01 Lambda Theta
n_theta_Prime 0.01 Lambda Theta Prime
n_sigmoid 1 Sigmoid sharpness
n_iter 15000 Number of iterations

Cross-Validation. We applied a 10-fold cross-validation tech-
nique to evaluate the variability and reliability of our models. For
each model, we split our dataset into 10 folds containing the equal
size of app reviews. Then, we performed 10 evaluations with vari-
ous testing datasets wherein each evaluation 9 folds were used as
a training dataset and the other fold was used as a testing dataset.
Put differently, unlike other approach that is dependent on just
one train-test split, when evaluating our model using 10-fold cross-
validation, we train on multiple train-test splits in which one fold
is left as a holdout data set, so it is unseen during the training.
This approach is considered the preferred method as it gives us a
better indication of how well our model performs on unseen data.
We aggregated the results of the 10 evaluations and reported the
average performance tested with multiple models.

4 EXPERIMENTAL RESULTS AND
EVALUATION

In this section, we review the results of our experiments to evaluate
the performance of our approach. For evaluating various accessi-
bility classification models, we used standard statistical measures
(Precision, Recall, Accuracy, F1-measure). Using the evaluation re-
sults, we provide answers to our research questions.

RQ1. To what extent machine learning models can accu-
rately distinguish accessibility reviews fromnon-accessibility
reviews?

We conducted an experiment to determine if the automatic clas-
sification of user reviews using machine learning techniques can
be performed with high accuracy. We wanted to understand the
opportunities and limitations of the machine learning technique in
automatically detecting accessibility reviews.
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Figure 4: Comparison between binary classifiers, in terms of precision, recall, accuracy, and F1-measure.

We compared the nine classification algorithms tested in this
study with respect to precision, recall, accuracy and F1-measure
and reported the results as shown in Figure 4. The accuracy and
F1-measure of the Boosted Decision Trees model (BDTs-model)
is clearly higher than its competitors for the classification of ac-
cessibility reviews. The BDTs-model with the accuracy of 90.6%
and F1-measure of 90.7%, outperformed other classification algo-
rithms. Figure 4 also shows that the Bayes Point Machine (BPM)
and Averaged Perceptron (AP) with F1-measure of 88.7% and 88.3%
respectively, yielded higher predictive power after the Boosted
Decision Trees.

The fact that BDTs-model achieved top performance rate can
be explained by the fact that a boosted decision tree aggregates
several learnings since it is an ensemble learning method. In the
ensemble method, the errors of the first tree are fixed by the second
tree, and the errors of the second tree are fixed by the third, and
so on. In this method, the entire ensemble trees together form the
prediction.

To further understand how these models distilled the text of the
reviews into features, we extract keywords that were trending in
our dataset, that we enumerate in Table 3. It is important to note
that the majority of these keywords were identified by the BBC
recommendations for mobile accessibility, however, not all of these
keywords were found to be useful for our best performing classifier,
i.e., BDTs-model. In Table 3, we report in bold, the features that
were influential in increasing the accuracy of the trained Boosted
Decision Trees. Such finding does not necessarily deny the rele-
vance of the remaining keywords in describing accessibility related

issues, but the fact that they were not selected, indicates their exis-
tence in non-accessibility related reviews. Keywords such as “dark
mode” or “mute”, while being used in the BBC guidelines, are also
known to be used in general usability contexts. For example, the
keyword “mute” tends to be frequently used in reviews related to
media and video players, where sound is one of the main features
of the app.

Further, on a more qualitative sense, we examine the set of fre-
quently occurring bigrams for the keywords (reported in Table 3)
that are strongly correlated to the accessibility review . Bigram
corresponds to a sequence of two adjacent words in a sentence
to help better understanding the context for the given terms. By
analyzing the natural language in the accessibility review, we ob-
tain more specific accessibility review-related terminology. Table 4
presents the frequently occurring bigrams in the review. Looking
at these terms, we see that developers are either commenting on
the features of the apps (e.g., “easily accessibile”, “good text reflow”,
“great for visually impaired”), or they are discussing accessibility
issues with their products pointing out that the apps need to be
improved (e.g., “terribly hard to see”, “no visual cue”, “cant read”).

The findings, illustrated in Tables 3 and 4 indicate a potential vari-
ation of how users typically state their accessibility needs. While it
seems intuitive, there are no studies that focused on extracting such
information in a structured manner to facilitate the identification
of such accessibility problems by the app maintainers.

Although a high classification performance of our BDTs-model
has been demonstrated in Figure 4, there are some limitations that
lead BDTs-model to output some misclassified reviews as illustrated
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in Table 5. According to our thorough analysis, we notice that the
misclassification of our model can be related to:

• False positive instances caused by the format of reporting
user perspective of the apps. The examples in the table show
that different expression about the apps like “simple” or
“headache” can be confusing to the classifier and hence it
misclassified these reviews.

• False negative instances caused by the format of reporting
a specific feature of the apps. As shown in the table, the
users commented on a specific feature such as “functioning
reader” and “caller ID”. The BDTs-model will wrongly clas-
sify it because these could be seen as an accessibility-related
features.

It is worth noting that the above misclassifications do not have a
large influence on the overall performance of the BDTs model. Only
a small number of reviews are wrongly classified by our model.
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RQ1. To what extent machine learning models can accu-
rately distinguish accessibility reviews fromnon-accessibility
reviews?

We conducted an experiment to determine if the automatic clas-
sification of user reviews using machine learning techniques can
be performed with high accuracy. We wanted to understand the
opportunities and limitations of the machine learning technique in
automatically detecting accessibility reviews.

We compared the nine classification algorithms tested in this
study with respect to precision, recall, accuracy and F1-measure
and reported the results as shown in Figure 4. The accuracy and
F1-measure of the Boosted Decision Trees model (BDTs-model)
is clearly higher than its competitors for the classification of ac-
cessibility reviews. The BDTs-model with the accuracy of 90.6%
and F1-measure of 90.7%, outperformed other classification algo-
rithms. Figure 4 also shows that the Bayes Point Machine (BPM)
and Averaged Perceptron (AP) with F1-measure of 88.7% and 88.3%
respectively, yielded higher predictive power after the Boosted
Decision Trees.

The fact that BDTs-model achieved top performance rate can
be explained by the fact that a boosted decision tree aggregates
several learnings since it is an ensemble learning method. In the
ensemble method, the errors of the first tree are fixed by the second
tree, and the errors of the second tree are fixed by the third, and
so on. In this method, the entire ensemble trees together form the
prediction.

To further understand how these models distilled the text of the
reviews into features, we extract keywords that were trending in
our dataset, that we enumerate in Table 3. It is important to note
that the majority of these keywords were identified by the BBC
recommendations for mobile accessibility, however, not all of these
keywords were found to be useful for our best performing classifier,
i.e., BDTs-model. In Table 3, we report in bold, the features that
were influential in increasing the accuracy of the trained Boosted
Decision Trees. Such finding does not necessarily deny the rele-
vance of the remaining keywords in describing accessibility related
issues, but the fact that they were not selected, indicates their exis-
tence in non-accessibility related reviews. Keywords such as “dark
mode” or “mute”, while being used in the BBC guidelines, are also
known to be used in general usability contexts. For example, the
keyword “mute” tends to be frequently used in reviews related to
media and video players, where sound is one of the main features
of the app.

Further, on a more qualitative sense, we examine the set of fre-
quently occurring bigrams for the keywords (reported in Table 3)
that are strongly correlated to the accessibility review . Bigram
corresponds to a sequence of two adjacent words in a sentence
to help better understanding the context for the given terms. By
analyzing the natural language in the accessibility review, we ob-
tain more specific accessibility review-related terminology. Table 4
presents the frequently occurring bigrams in the review. Looking
at these terms, we see that developers are either commenting on
the features of the apps (e.g., “easily accessibile”, “good text reflow”,
“great for visually impaired”), or they are discussing accessibility
issues with their products pointing out that the apps need to be
improved (e.g., “terribly hard to see”, “no visual cue”, “cant read”).

The findings, illustrated in Tables 3 and 4 indicate a potential vari-
ation of how users typically state their accessibility needs. While it
seems intuitive, there are no studies that focused on extracting such
information in a structured manner to facilitate the identification
of such accessibility problems by the app maintainers.

Although a high classification performance of our BDTs-model
has been demonstrated in Figure 4, there are some limitations that
lead BDTs-model to output some misclassified reviews as illustrated
in Table 5. According to our thorough analysis, we notice that the
misclassification of our model can be related to:

• False positive instances caused by the format of reporting
user perspective of the apps. The examples in the table show
that different expression about the apps like “simple” or
“headache” can be confusing to the classifier and hence it
misclassified these reviews.

• False negative instances caused by the format of reporting
a specific feature of the apps. As shown in the table, the
users commented on a specific feature such as “functioning
reader” and “caller ID”. The BDTs-model will wrongly clas-
sify it because these could be seen as an accessibility-related
features.

It is worth noting that the above misclassifications do not have a
large influence on the overall performance of the BDTs model. Only
a small number of reviews are wrongly classified by our model.

Summary. The Boosted Decision Trees model, with an ac-
curacy of 90.6% and an F1-measure of 90.7%, is the best
performing model in the binary classification of accessibil-
ity reviews.

RQ2. How effective is our machine learning approach in
identifying accessibility reviews?

The main goal of this study is to propose an automatic approach
for identification of accessibility reviews that can effectively outper-
form current state-of-the-art baselines: Keyword-based (i.e., also
called pattern-based or string-matching) [18] and Random classifier
[40]. Existing studies that have appliedmachine learning techniques
in similar contexts (i.e., text classification) usually evaluate their
approach using different classifiers. To compare their approach
against others, they consider the keyword-based approach. To our
knowledge, the only study that considers additional approach (i.e.,
random classifier) is the study by Da Silva et al. [40]. Thus, we con-
sider keyword-based and random classifier to compare against our
approach. Answering this question is important to understand if
the detection of accessibility reviews is a learning problem. We hy-
pothesize that learning algorithms can outperform string-matching
algorithms. To examine if the hypothesis holds true, we chose to
investigate the following two baselines, and compared them with
our BDTs-model.

Baseline 1. Keyword-based Approach. The keyword-based
(string-matching) approach for identifying accessibility reviews is
suggested by Eler et al. [18]. In their work, they inspected 214,053
user reviews to identify the reviews pertaining to accessibility.
Their string-matching approach classified a total of 5,076 reviews
as accessibility reviews. However, manual verification of the 5,076

RQ2. How effective is our machine learning approach in
identifying accessibility reviews?

The main goal of this study is to propose an automatic approach
for identification of accessibility reviews that can effectively outper-
form current state-of-the-art baselines: Keyword-based (i.e., also
called pattern-based or string-matching) [18] and Random classifier
[40]. Existing studies that have appliedmachine learning techniques
in similar contexts (i.e., text classification) usually evaluate their
approach using different classifiers. To compare their approach
against others, they consider the keyword-based approach. To our
knowledge, the only study that considers additional approach (i.e.,
random classifier) is the study by Da Silva et al. [40]. Thus, we con-
sider keyword-based and random classifier to compare against our
approach. Answering this question is important to understand if
the detection of accessibility reviews is a learning problem. We hy-
pothesize that learning algorithms can outperform string-matching
algorithms. To examine if the hypothesis holds true, we chose to
investigate the following two baselines, and compared them with
our BDTs-model.

Baseline 1. Keyword-based Approach. The keyword-based
(string-matching) approach for identifying accessibility reviews is
suggested by Eler et al. [18]. In their work, they inspected 214,053
user reviews to identify the reviews pertaining to accessibility.
Their string-matching approach classified a total of 5,076 reviews
as accessibility reviews. However, manual verification of the 5,076
reviews later found that only 2,663 of the reviews were correctly
identified [18].

To calculate statistical metrics for baseline 1, we used a set of
5,326 reviews (cf., set of 2,663 accessibility reviews, from Table 1,
and another 2,663 non-accessibility reviews, selected from the same
apps). Then, we manually inspected these reviews to determine
true positives (TP), true negatives (TN ), false positives (FP), and
false negatives (FN ). True positives are when the keyword-based

approach correctly detected accessibility reviews, and true nega-
tives are when non-accessibility reviews are correctly identified.
False positives are the reviews identified as accessibility reviews
while they are not; and false negatives are the reviews identified
as non-accessibility reviews while they are accessibility reviews.
Since we already had the reviews labelled, we were able to count
TP, TN, FP and FN.

Baseline 2. Random Classifier. Similar to Da Maldonado et
al. [40], we consider Random classifier as one of the baselines to
compare our approach to. The precision of the random classifier
technique is calculated by dividing the number of accessibility
reviews by the total number of user reviews (i.e., 2663

214053 = 0.012).
When it comes to recall, there is only 50% probability for a review to
be classified as an accessibility review since there are two possible
classifications available. Finally, the F1-measure of baseline 2 is
calculated as 2 ∗ 0.012∗0.5

0.012+0.5 = 0.023.
Using the values of TP, TN, FP and FN, we calculated the Pre-

cision, Recall, and F1-measure, for both baselines. Table 6 shows
the standard statistical measures of the three approaches, also the
performance improvements achieved by our BDTs-model compared
to the other two methods.

As can be seen from Table 6, F1-measure obtained by the ma-
chine learning approach is much higher than the other methods.
F1-measure achieved by the machine learning approach is 0.90,
while F1-measure values using keywords and random classifier
are 0.576 and 0.023 respectively. Table 6 shows that our approach
outperforms the keyword-based approach by 1.574 times and the
random classifier by 39.434 times when identifying accessibility re-
views. To better understand the performance of the string-matching
method, we have extracted examples reviews that were wrongly
classified, as accessibility:

Review 1. “Good to have your files easily accessible.
Would like integration of caldav/ carddav”

Review 2. “Very useful application. Gmail users must
go for it blind eyes”

The existence of keywords such as “accessible” and “blind eyes”,
are string-matched to the keywords considered as accessibility by
the guidelines, and so, the keyword-based approach will flag their
corresponding reviews as accessibility. However, the first review
(i.e., Review 1) refers to the new feature that allows user files to be
accessible more efficiently and requests the integration of a protocol
for the synchronization of calendars. Similarly, the second review
(i.e., Review 2), is praising an app that synchronizes Gmail calendar
with Outlook calendar, and the user’s expression of "going with
blind eyes", refers to their satisfaction, and not to what would be
considered by the string-matching method as an accessibility issue.

To determine the different cases of when the keyword-based
approach fails, we evaluated 592 reviews, a statistically significant
sample with a confidence level of 99% and a confidence interval of
5%. By analyzing the selected reviews, we identified the following
reasons behind the failure cases of the string-matching approach:

• KeywordMisspelling. This category depicts the case when
accessibility aspects of the mobile application are addressed
by the users using misspelled keywords. This case can be
illustrated in the following example: “ Font size of lower-
case letters is sooosmall! How to change it? It should be like
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Table 3: List of keywords trending in the 5326 reviews. Keywords in bold are found to be strongly correlated to accessibility
reviews by our model.

Keywords

(1) dark mode (16) adjustable (31) voice command (46) colour coding (61) captcha
(2) zoom (17) blind (32) text-to-speech (47) transcript (62) audio description
(3) customization (18) header (33) eyestrain (48) default language (63) container
(4) font size (19) overlap (34) strain (49) older device (64) distinguishable
(5) volume (20) pause button (35) background image (50) visual cue (65) input type
(6) cannot see (21) flicker (36) screen reader (51) grouped (66) keyboard language
(7) accessibility (22) spacing (37) change language (52) seizures (67) page refresh
(8) readable (23) migraine (38) small widget (53) select language (68) page title
(9) change font (24) input method (39) stop button (54) understandable (69) sign language
(10) hard to see (25) autoplay (40) impaired (55) vibration feedback (70) svg image
(11) background color (26) metadata (41) text reflow (56) actionable (71) switch device
(12) light mode (27) too bright (42) timeout (57) audio cue (72) touch target
(13) mute (28) haptic (43) consistency (58) missing label (73) adjust size
(14) contrast (29) scaling (44) epilepsy (59) navigable (74) adjust colour
(15) subtitle (30) control key (45) assistance (60) verbose

Table 4: A sample of frequently occuring bigrams for the keywords that are strongly correlated to accessibilty review by our
model.

Bigram

cannot see accessibility readable hard to see
cannot see anything easily accessible readable text very hard to see
cannot see worksheet more accessible document reader too hard to see
cannot see number great accessibility easier reading really hard to see
cannot see status accessibility suite can read terribly hard to see
still cannot see accessibility screen cant read hard to see theme
blind header flicker voice command
blind user theme header screen flicker voice command search
color blind custom header flicker taskbar use voice command
supports blind size header flicker background voice commands works
impaired / blind adjust header heavy flickering simple voice command
totally blind transparent header constant flickering custom voice command
text-to-speech screen reader impaired text reflow
verbose text-to-speech screen reader accessibility visually impaired text reflow feature
text-to-speech works accessibility screen reader vision impairment activate text reflow
text-to-speech feature talkback screenreader visual impairment good text reflow
text-to-speech news small-screen reader great for visually impaired has text reflow
transcript visual cue navigable audio description
transcript title no visual cue navigable bar turns on audio description
recording / transcription some visual cue navigable button
zooming and transcript provide a visual cue navigable app
transcription not found easily navigation

on google keybord when you change capital/lowercase mode
- lowercase letters have almost the same size as capital. It’s
much easier for your eyes!”. The keyword matching approach
can miss any word with a typo or with inproper spacing,
such as “keybord” or “sooosmall”. Misspellings are frequent
in app user reviews, since mobile writing is known to be
more prone to typos.

• Keyword Variation. This category shows the case in which
users use different part-of-speech (POS) of the accessibility-
related keywords reported in Table 3. As shown in the fol-
lowing review: “very accessible as a blind user thank you”,
the user used the adjective form (“accessible”) of the word
accessibility.

• Expression Variation. This category represents cases in
which users use different expressions of the keywords listed
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Table 5: Examples of the misclassification case of our BDTs-model.

Type Example

False Positive

“Simple and easy to use”

“This app works well - especially “lucid dream” - i still remember my dream last week.
Amazing! But i dont like the side effects - like headache and other emotional thing.”

False Negative

“Beautiful Functioning Reader”

“Thank you for all your hard work in making this app for us to use. And to offer it to us for free
is amazing. I use this app everyday, I got all my friends and family using it too. Thank you so
much! I can only think of one thing that could make this app better, if you could add caller ID
with name, and make it so users could turn it on or off, this would be great. Even without that,
this app is great.”

in Table 3 to address accessibility aspects of the apps. This
case is best illustrated in the following accessibility review:
“still getting responses from the wrong people and noticed that
when in night mode with pure black background - when you
try to delete a message the yes option is completely black so
impossible to see”. As can be seen, the expression “impossi-
ble to see” is used instead of the keyword “cannot see” to
represent the user perspective on the problem.
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random classifier by 39.434 times when identifying accessibility re-
views. To better understand the performance of the string-matching
method, we have extracted examples reviews that were wrongly
classified, as accessibility:

Review 1. “Good to have your files easily accessible.
Would like integration of caldav/ carddav”

Review 2. “Very useful application. Gmail users must
go for it blind eyes”

The existence of keywords such as “accessible” and “blind eyes”,
are string-matched to the keywords considered as accessibility by
the guidelines, and so, the keyword-based approach will flag their
corresponding reviews as accessibility. However, the first review
(i.e., Review 1) refers to the new feature that allows user files to be
accessible more efficiently and requests the integration of a protocol
for the synchronization of calendars. Similarly, the second review
(i.e., Review 2), is praising an app that synchronizes Gmail calendar
with Outlook calendar, and the user’s expression of "going with
blind eyes", refers to their satisfaction, and not to what would be
considered by the string-matching method as an accessibility issue.

To determine the different cases of when the keyword-based
approach fails, we evaluated 592 reviews, a statistically significant
sample with a confidence level of 99% and a confidence interval of
5%. By analyzing the selected reviews, we identified the following
reasons behind the failure cases of the string-matching approach:

• KeywordMisspelling. This category depicts the case when
accessibility aspects of the mobile application are addressed
by the users using misspelled keywords. This case can be
illustrated in the following example: “ Font size of lowercase
letters is sooosmall! How to change it? It should be like on google
keybord when you change capital/lowercase mode - lowercase
letters have almost the same size as capital. It’s much easier for
your eyes!”. The keyword matching approach can miss any
word with a typo or with inproper spacing, such as “keybord”
or “sooosmall”. Misspellings are frequent in app user reviews,
since mobile writing is known to be more prone to typos.

• Keyword Variation. This category shows the case in which
users use different part-of-speech (POS) of the accessibility-
related keywords reported in Table 3. As shown in the fol-
lowing review: “very accessible as a blind user thank you”,
the user used the adjective form (“accessible”) of the word
accessibility.

• Expression Variation. This category represents cases in
which users use different expressions of the keywords listed
in Table 3 to address accessibility aspects of the apps. This
case is best illustrated in the following accessibility review:
“still getting responses from the wrong people and noticed that
when in night mode with pure black background - when you
try to delete a message the yes option is completely black so
impossible to see”. As can be seen, the expression “impossi-
ble to see” is used instead of the keyword “cannot see” to
represent the user perspective on the problem.

Summary. The Boosted Decision Trees model outperforms
the current state-of-the-art approaches in the classifica-
tion of accessibility reviews. We obtained an F1-measure
score of 90.7% with an improvement of 1.574x and 39.434x
over the keyword-based and random classifier approaches
respectively.

RQ3:What is the size of the training dataset needed for the
classification to effectively identify accessibility reviews?

So far, we showed that our machine learning approach can accu-
rately identify user reviews that pertain to accessibility. However,
the performance of a classifier relies on the size of the training
data. At the same time, creating a training dataset is a challenging
and time-consuming task. Thus, the question is: What is the size
of the training dataset needed to effectively classify user reviews?
If an approach requires a very large training dataset than it will
require a considerable time and effort to be applied to other similar
contexts. However, if less training dataset is required to effectively
classify accessibility reviews, then our approach can be applied and
extended with little efforts.

To answer this research question, we incrementally added re-
views to the training dataset and evaluated the performance of the
classification. We began by creating a large training dataset that
contains equal size of accessibility reviews and non-accessibility
reviews. Then, we used cross validation technique, which is a tech-
nique that partitions the original dataset into a training set to train
the model, and a test set to evaluate it using number of folds [32].
In this study, we divided the dataset into 10 folds making sure they
contain equal size of both classes. Next, we tested our approach
using a 10-fold cross-validation technique using 9 folds for training
and 1 fold for testing. Since we wanted to monitor the performance
of our classifier as the training dataset size increased, we incremen-
tally added batches of 100 reviews until we used all of our training
data (e.g., 5,326 reviews). It is important to note that we consid-
ered the equal size of accessibility reviews and non-accessibility
reviews with batches incrementally added to the training dataset.
We computed the F1-measure value for each iteration (e.g., after
adding batches of new reviews to the training set). We recorded the
number of reviews needed to achieve at least an F1-measure of 80%
to 90%.

Figure 5 shows F1-measures calculated when detecting accessi-
bility reviews, while incrementally adding batches of reviews to the
training dataset. Our results show that the highest F1-measure (i.e.,
0.907) was achieved with 5,326 reviews (our total training dataset)
and the lowest F1-measure value (i.e., 0.630) was achieved with 100
reviews. Our results also show that 80 to 90 percent F1-measure
is achieved with 400 to 5000 reviews in the training dataset. Such
that, we need only 400 reviews to get around 80% F1-measure and
we need at least 1500 reviews to get 85% or higher, while with 5000
reviews we got around 90% F1-measure. Finally, we found that the
F1-measure score improves as we add to the training dataset.
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Table 6: Comparison in approaches used to the baselines in our study.

Our approach Keyword-based Random classifier
Precision Recall F1 Precision Recall F1 Precision Recall F1

Classification 0.898 0.916 0.907 0.996 0.405 0.576 0.012 0.500 0.023
Improvement – – – 0.901 x 2.261 x 1.574 x 74.833 x 1.832 x 39.434 x
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Figure 5: F1-measure achieved by incrementally adding training data size for binary classification.

Summary. We find that we need a relatively smaller train-
ing dataset (i.e., 1500 reviews) to get 85% or higher F1-
measure. The F1-measure score improves as we add to the
training dataset.

5 DISCUSSION
We presented a new approach that identifies app reviews with ac-
cessibility concerns. We compared our new approach to the current
state-of-the-art methods. Based on these findings we discuss impli-
cations that can be theory-based and practice-based. Theory-based
implications show how this study can further advance the research
on accessibility reviews. Practice-based implications show how
our model supports our community in building and maintaining
accessible mobile apps.

Implication 1: App reviews are rich source of information
that can be mined to identify specific accessibility problems
with the mobile app. There are so many accessibility guidelines
that developers and designers can find it difficult to test for all of
these guidelines. Additionally, adhering to these guidelines does
not necessarily guarantee the accessibility of the said app. Also,
usability testing with different groups of people with disabilities,
e.g., blind or deaf, can be infeasible especially for medium and
small-scale companies. One way to discover accessibility problems
which prior testing did not reveal is to listen to the users and learn

from the reviews they wrote. Our approach can aid technology
professionals to quickly spot accessibility problems with their app.

Implication 2: Accessibility as part of mobile apps main-
tenance and evolution. There exist accessibility testing tools and
methods that are designed to support the implementation and test-
ing phases of the software. However, there are no tools, to the best
of our knowledge, that supports software accessibility in the main-
tenance phase. With changes made to an app, either for adding
a feature or fixing a bug, accessibility can be at risk. Also, with
updates made to the phone’s operating system or the installed assis-
tive technology, the accessibility of an app may deteriorate. We call
for innovative methods that can support technology professionals
in maintaining the accessibility of their app after its release. Our
approach in analyzing app reviews offers an opportunity for devel-
opers and designers in detecting accessibility pitfalls based on their
users’ written feedback. However, with the tremendous number of
reviews developers receive on a daily basis, it becomes impractical
to manually read through them and identify potential issues related
to their new release. Adding our model to the pipeline, will alleviate
the manual overhead of looking up accessibility related reviews,
and so developers can quickly locate their corresponding issues,
and add them to their maintenance pipeline.

Implication 3: Understanding users’ language in express-
ing their accessibility concerns. When we compared our BDTs-
model to the keyword-based detector, we found that some accessi-
bility reviews did not contain the accessibility keywords that were
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small-scale companies. One way to discover accessibility problems
which prior testing did not reveal is to listen to the users and learn
from the reviews they wrote. Our approach can aid technology
professionals to quickly spot accessibility problems with their app.

Implication 2: Accessibility as part of mobile apps main-
tenance and evolution. There exist accessibility testing tools and
methods that are designed to support the implementation and test-
ing phases of the software. However, there are no tools, to the best
of our knowledge, that supports software accessibility in the main-
tenance phase. With changes made to an app, either for adding
a feature or fixing a bug, accessibility can be at risk. Also, with
updates made to the phone’s operating system or the installed assis-
tive technology, the accessibility of an app may deteriorate. We call
for innovative methods that can support technology professionals
in maintaining the accessibility of their app after its release. Our
approach in analyzing app reviews offers an opportunity for devel-
opers and designers in detecting accessibility pitfalls based on their
users’ written feedback. However, with the tremendous number of
reviews developers receive on a daily basis, it becomes impractical
to manually read through them and identify potential issues related
to their new release. Adding our model to the pipeline, will alleviate
the manual overhead of looking up accessibility related reviews,
and so developers can quickly locate their corresponding issues,
and add them to their maintenance pipeline.

Implication 3: Understanding users’ language in express-
ing their accessibility concerns. When we compared our BDTs-
model to the keyword-based detector, we found that some accessi-
bility reviews did not contain the accessibility keywords that were

driven from accessibility guidelines [18]. This indicates that users
voice their accessibility feedback using “user taxonomy” which may
or may not echo the technical and professional terms used in acces-
sibility standards. Further research is needed to understand how
users describe mobile accessibility issues. By learning the accessi-
bility “user taxonomy”, we can improve our BDTs-model, which
will lead to enhanced discovery of accessibility reviews.

Implication 4: The interplay between developers and de-
signers, accessibility experts, and users. Accessibility experts
establish guidelines and design methods in support of creating ac-
cessible software. Technology professionals often are not able to
digest all these guidelines and often find existing resources lacking.
This situation yielded to the existence of software products that are
inaccessible to people with disabilities. The effective involvement
of people with disabilities in this process can help bridging the com-
munication gap between accessibility experts and developers and
designers. By giving users the opportunity to lead the prioritization
of accessibility issues based on their usage experience, mobile apps
accessibility can be improved in a more meaningful way for people
with disabilities. Analyzing app reviews is one way to give users
the lead in determining which accessibility issue should be fixed in
the next release. Analyzing app reviews can also offer insights to ac-
cessibility experts on users’ accessibility needs right from the field,
which will be more realistic than results collected from controlled
lab studies.

Implication 5: Direct and immediate apps filtering bene-
fit for end users. People find online reviews helpful in making
purchase decisions [8]. Peer comments help users become aware
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of the limitations of reviewed products [42]. Currently, on mobile
applications stores, e.g., App Store and Google Play, users can read
all reviews, sort them by most helpful or most recent. However,
mobile application stores provide no means to filtering reviews
based on relevance to specific quality metrics, e.g., accessibility.
This lack of filtering pushes users to download the app first and
then experience its accessibility, leaving no room for benefiting
from peer comments. Sometimes, apps suffer from accessibility
regression giving users an unpleasant surprise with an updated
app that is less accessible than its former version [65]. We call on
mobile application stores to take action and allow users to filter
reviews based on relevance to accessibility.

Implication 6: Pushing the boundaries ofAccessibility test-
ing. Current accessibility testing strategies are human intensive,
and therefore become expensive and impractical, as most devel-
opers struggle to find the appropriate testers who can evaluate
the compliance of their apps to accessibility guidelines. Existing
accessibility scanners are tailored for the web, and they cannot
be applied to the mobile environment. In this context, online user
reviews, offer a rich source of scenarios, which can be coupled with
the app’s current version, to create test cases of practically captured
anomalies. Relying on this set of reviews, as a shared knowledge,
developers can quickly identify potential test cases that they need
to perform, in case they are incorporating a given accessibility tool
in their app. Furthermore, as the mobile environment is extremely
dynamic, recent user reviews can quickly reveal any appearing
anomalies in the newer app releases.

6 THREATS TO VALIDITY
In this section, we identify several threats to the validity of our
study. We group the threats to Construct Threats and External
Threats to validity.

Construct Threats relate to the appropriateness of our dataset
and accuracy of the previous work [18]. A potential threat is related
to creating a training dataset or the manual classification. Develop-
ing a training dataset is typically a tedious job, also subject to reader
bias. We mitigated this risk by choosing a dataset of accessibility
reviews as our training data that were previously identified and
validated [18]. Additionally, we used all of the identified reviews
as training input rather than choosing a sample set of reviews. A
total of 2,663 reviews were previously identified as accessibility
reviews from 214,053 app reviews through manual inspections and
validations.

Another potential threat relates to the keywords used for the
identification of accessibility reviews through a string-matching
approach. The string-matching approach relied on 213 keywords
derived from 54 accessibility recommendations by BBC. The key-
words and phrases users use in their reviews do not necessarily
match the keywords available in the guidelines and recommenda-
tions. This mismatch includes but not limited to situations when
keywords would be spelled incorrectly by reviewers. A related
concern is whether the set of keywords is inclusive of all possible
keywords that users use to express their accessibility concerns. To
mitigate this threat, we used keywords defined by [18] in which the
authors adopted variants for these keywords to ensure they would
not miss any relevant review during their manual validation. This

raised our confidence to use the dataset that has these keywords as
a representative sample of accessibility reviews.

External Threats relate to the generalizability of our findings
for this evaluation. We evaluated and tested our findings on a
dataset collected by previous researchers [18]. The dataset was
collected only from Android open-source applications. Therefore,
the dataset did not represent the entire mobile apps on the App
stores such as Apple store applications. Also, we only study mo-
bile application reviews of open-source applications. Our results
may not generalize to commercially developed projects or to other
reviews that are written in other languages than English.

7 CONCLUSION
This study presents an approach that automates the classification of
app reviews as accessibility-related or not so developers can easily
detect accessibility issues with their products and improve them
to more accessible and inclusive apps utilizing the users’ input. As
Hayes pointed out:“In Action Research, the goal is ultimately to
create sustainable change. That is to say, once the research facilita-
tors leave, the community partners should be able to maintain the
positive changes that have been made.” [25]. Our goal is to create a
sustainable change, by including a model in developer’s software
maintenance pipeline, and raising awareness of existing errors that
hinders the accessibility of mobile apps, which is a pressing need
[48].

As we develop our model, we conducted an evaluation of nine
different classifiers using an existing dataset of manually validated
accessibility reviews. Our evaluation shows that the Boosted Deci-
sion Tree classifier offers higher accuracy than the other approaches
in the classification of app reviews. Additionally, we compared our
approach with two baselines, namely a keyword-based approach,
and a random classifier. The results indicate that our approach out-
performs the two state-of-the-art approaches with the F1-measure
of 90.7%. Finally, we conduct an experiment to evaluate the impact
of training data sizes on our classifier’s accuracy. Our evaluation
shows that we need a relatively smaller dataset (i.e., 1500 reviews)
for training to get 85% or higher F1-measure. However, the F1-
measure score improves as we add to the training dataset.

As our results show, having an adequately large training size is
important for high accuracy in prediction. Given the millions of app
reviews available on the app store platforms, the training process
can be cumbersome and laborious. Additionally, it is necessary
to obtain labels from multiple Subject Mater Experts (SMEs) to
make the training dataset more reliable. In order to further reduce
the efforts needed by developers and SMEs in creating a training
data, we are planning to explore Active Learning [57, 58], a well-
known machine learning paradigm for classification. We also plan
to perform a multi-class classification on the accessibility reviews
— dividing them into categories such as readability of text, audio,
video, UI, gestures etc.
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