
On the Identification of Accessibility Bug Reports in Open Source
Systems

Wajdi Aljedaani
wajdialjedaani@my.unt.edu
University of North Texas

Mohamed Wiem Mkaouer
mwmvse@rit.edu

Rochester Institute of Technology

Stephanie Ludi
Stephanie.Ludi@unt.edu
University of North Texas

Ali Ouni
ali.ouni@etsmtl.ca

ETS Montreal, University of Quebec

Ilyes Jenhani
ijenhani@pmu.edu.sa

Prince Mohammad Bin Fahd
University

Abstract

Today, mobile devices provide support to disabled people to make
their life easier due to their high accessibility and capability, e.g.,
finding accessible locations, picture and voice-based communica-
tion, customized user interfaces and vocabulary levels. These acces-
sibility frameworks are directly integrated, as libraries, in various
apps, providing themwith accessibility functions. Just like any other
software, these frameworks regularly encounter errors. These er-
rors are reported by app developers in the form of bug reports.
These bug reports related to accessibility faults need to be urgently
fixed since their existence significantly hinders the usability of
apps. In this context, the manual inspection of a large number of
bug reports to identify accessibility-related ones is time-consuming
and error-prone. Prior research has investigated mobile app user
reviews classification for various purposes, including bug reports
identification, feature request identification, app performance opti-
mization etc. Yet, none of the prior research has investigated the
identification of accessibility-related bug reports, making their pri-
oritization and timely correction difficult for software developers.
To support developers with this manual process, the goal of this
paper is to automatically detect, for a given bug report, whether it
is about accessibility or not. Thus, we tackle the identification of
accessibility bug reports as a binary classification problem. To build
our model, we rely on an existing dataset of manually curated acces-
sibility bug reports, extracted from popular open-source projects,
namely Mozilla Firefox and Google Chromium. We design our so-
lution to learn from these reports the appropriate discriminative
features i.e., keywords that properly represent accessibility issues.
Our trained model is evaluating using stratified cross-validation,
and the findings show that our classifier achieves high F1-scores of
93%.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
W4A’22, April 25–26, 2022, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9170-2/22/04. . . $15.00
https://doi.org/10.1145/3493612.3520471

CCS Concepts
• Human-centered computing→ Empirical studies in acces-
sibility; Ubiquitous and mobile devices.

Keywords
Bug Report, Accessibility, Machine Learning, Bug Repository, Open
Source.

ACM Reference Format:
Wajdi Aljedaani, Mohamed Wiem Mkaouer, Stephanie Ludi, Ali Ouni,
and Ilyes Jenhani . 2022. On the Identification of Accessibility Bug Re-
ports in Open Source Systems. In 19th Web for All Conference (W4A’22),
April 25–26, 2022, Lyon, France. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3493612.3520471

1 Introduction
Open source and industrial software utilize bug-tracking systems —
also called issue-tracking systems— such as Bugzilla [2, 4, 12]. These
tracking systems are used to help developers maintain the software
by allowing the end-users to submit the issue description they
faced while they are using the software. Bug reports can describe
accessibility issues that could have prevented or limited users with
a disability, special needs, or functional constraints.

People with disabilities or special needs rely heavily on accessi-
bility software applications in their everyday life (find accessible
location, customized UIs, voice translation, communication, driv-
ing, shopping, etc.). Having accessibility-related bugs can have
severe impacts on their lives that can go from preventing them
from participating in new activities, to threatening their lives in
critical situations due to the sensitive nature of disabled people.
Therefore, identifying and prioritizing these bugs are of crucial
importance. Yet, the manual identification of these bug reports is
time-consuming, human-intensive, and error-prone. The textual
nature of bug reports adds another layer of challenge related to
the meaning ambiguity of these natural language descriptions. To
illustrate this problem, let us consider the following two examples:

Example 1: “Missing labels on the buttons in the "Select
how you want to use Weave” 1

Example 2: “Performance issue: TextArea very slow
when accessibility API turned on” 2

1https://bugzilla.mozilla.org/show_bug.cgi?id=533573
2https://bugs.chromium.org/p/chromium/issues/detail?id=868830

https://doi.org/10.1145/3493612.3520471
https://doi.org/10.1145/3493612.3520471
https://doi.org/10.1145/3493612.3520471
https://bugzilla.mozilla.org/show_bug.cgi?id=533573
https://bugs.chromium.org/p/chromium/issues/detail?id=868830

W4A’22, April 25–26, 2022, Lyon, France Wajdi Aljedaani, Mohamed Wiem Mkaouer, Stephanie Ludi, Ali Ouni, and Ilyes Jenhani

While the first bug report describe a missing textual label in
a graphical component, making it not accessible for blind users,
the second bug report is related to a performance issue. Despite
containing the keyword accessibility, this bug is not related to
the accessibility of the software, but to a performance regression
detected when integrating the accessibility library, through its API,
to the system. These examples show that we cannot rely on the
keyword accessibility to identify accessibility related bug reports,
as the first example (accessibility bug report) did not contain the
keyword accessibility, while the second example (non-accessibility
bug report) did.

To support software developers with the correction of acces-
sibility errors in their systems, we propose a classification-based
approach for the automatic detection of accessibility bug reports.
However, the detection of such reports is challenging, besides the
inherited ambiguity of distinguishing meanings, in any natural lan-
guage text, the above example show how the keyword accessibility
can be misleading, which hardens the reliance on that keyword
alone. To cope with these challenges, we design our study to harvest
a potential terminology that can be used to describe accessibility
errors and faults.

Our approach relies on Natural Language Processing (NLP) tech-
niques to distill from a training sample (set of accessibility bug
reports) the proper features, i.e., phrases that tend to specifically
describe accessibility related faults in code. We performed our study
on seven open-source systems hosted in two popular issue tracking
systems Bugzilla [12] and Monorail [34] repositories. We mine all
the bug reports for the selected projects to identify accessibility
and non-accessibility bug reports based on their tags (manual in-
spection). To the best of our knowledge, this is the first study that
builds classification models to classify bug reports and identify
accessibility issues.

Specifically, we address the following research questions:
RQ1: Can we accurately detect accessibility-related bug reports?

Our aim is to design an approach that can automatically
identify accessibility-related bug reports. Therefore, we put
under test, various classifiers, such as neural networks, de-
cision trees, and SVM, known to be efficient and widely
used for binary classification problems. Answering to this
research question would reveal the best performing model
that we should deploy for our current problem, along with
showing how much we can advance the state-of-the-art of
detecting accessibility-related bug reports.

RQ2: What is the size of the training dataset needed for the
classification to effectively identify accessibility bug reports?
After evaluating the accuracy of our model, we analyze the
number of bug reports needed for training in order to achieve
our optimal model classification accuracy. We anticipate our
model to be easily exported and extended if it can achieve
an acceptable performance using a relatively small set of
training data. Otherwise, if the model requires a large num-
ber of bug reports, for training, then we report a need for a
considerable time and effort for labeling.

To summaries, the paper makes the following contributions:
• We present an automatic accessibility identification on seven
open-source systems to identify accessibility-related bug

Table 1: List of the keywords used to further verify bug re-
ports related to accessibility.

Guideline Keywords
Principles accessibility, disability, screen reader,

talkback, operable, impaired, impairment
Audio/video Subtitle, sign language, audio description,

transcript, blind, visual cue
Forms unique label, missing label

Text equivalent alternative text, non-visual, content description

reports by using machine learning algorithms. To the best
of our knowledge, this is the first accessibility classification
study to date on the bug reports dataset.

• An experimental study on a real world dataset of 256,700 bug
reports. Our key findings show that our model accurately
identifies accessibility-related bug reports achieves high F1-
scores of 93%. Furthermore, we infer which features, i.e.,
keywords, are relevant for the detection of such type of bug
reports

• We also publicly provide our dataset that served us as the
ground-truth, for replication and extension purposes3.

Paper organization. Section 2 summarizes the related work.
Section 3 describes our process of the classification approach. It
illustrates the process in which we prepare the data collection,
data preprocessing, data transformation, data classification, and the
machine learning algorithms used in our study. Section 4 presents
and discusses the results of our two research questions. We discuss
the threats to validity in Section 5. Finally, we conclude the paper
in Section 6.

2 Related Work
In software development and management of large-scale applica-
tions, bugs databases have become a crucial archive. They provide
developers with valuable details and encourage users to notify
developers of the problems facing users through the use of the
software. Many studies primarily refer to the bug repositories due
to their significance. This section presents two aspects of similar
studies, and shows the differences between our research and the
corresponding study.

2.1 Classification in Open-Source Repository

Previous studies have conducted Classifications on different aspects
of bug reports [3, 39]. For example, Zhou et al. [49] proposed an
automation approach to identify security-related by using NLP
and machine learning techniques. Their study was performed on
bug reports and commits of open-source projects from GitHub,
Jira, and Bugzilla. They used imbalance data where the security-
related bug reports and commits are less than 10% to challenge the
classifier. Another study used NASA datasets to identify security
and non-security bug reports by applying six algorithms [20]. Peters
et al. [38] presented a framework named FARSEC, which is used
to filter and rank security bug reports. The authors performed TF-
IDF techniques to observe security- related keywords to identify
bug reports. Alkhazi et al. [7] trained a learning-to-rank algorithm
to recommend suitable developers for fixing a given bug report.
3https://smilevo.github.io/access/

On the Identification of Accessibility Bug Reports in Open Source Systems W4A’22, April 25–26, 2022, Lyon, France

Fang et al. [16] built a binary classifier to detect whether a bug
report’s writing is rich enough for developers to easily locate the
bug. Aljedaani et al. [6] proposed an automated sentiment analysis-
based approach to classify accessibility user reviews to support the
developers detect issues and enhancing their app’s performance.

Our work applied a similar process, but we used classifier learn-
ing through the use of a statistic machine. We developed a classifi-
cation model to classify accessibility bug reports. Most accessibility
studies were on mobile platforms, in particular, Android, to investi-
gate user review issues. There is no study performed on accessibility
bug reports precisely to classify accessibility bug reports in open-
source systems.

2.2 Accessibility in Open-Source Applications

Many studies have conducted qualitative mobile-bug reports plat-
form analysis [5, 11, 30] and Android-related bug reporting tool
[35]. Markus et al. [31] propose a Braille interface platform named
MOST with such a wide range of applications. Al-Subaihin et al.
[1] presented an assessment of mobile web application accessibility.
McIlroy et al. [32] introduced an automatically labeling approach
based on the types of user review issues. Liu et al. [29] conducted
a study on Android applications to detect performance bugs to
identify common patterns. Alshayban et al. [9] have analyzed 1,000
Android applications based on three perspective developers, users,
and applications for accessibility issues. Panichella et al. [37] pro-
posed an approach using machine learning, which incorporated
three NLP, sentiment, and text analysis techniques to introduce a
taxonomy for classifying user reviews.

Vendome et al. [44] examined the Stack Overflow developer
discussions of the Android app’s accessibility. They have identified
posts based on a list of keywords that have been chosen from the
accessibility guide for mobile applications. They analyzed all the
questions asked in the Stack Overflow and answers that labeled
Android and found 810 out of 1,442. In a study similar to ours,
Eler et al. [15] performed an investigation on user reviews related
to mobile accessibility. The study applied to user reviews of 701
applications from the Google Play Store. Their approach was to
manually analyze the user reviews using a list of more than 200
keywords that refer to mobile accessibility.

3 Methodology

The following section explains our methodology and how we ob-
tained and analyzed the data for classifying accessibility bug reports
to answer the research questions of our study. Figure 1 presents
an overview about our study which consists of the following main
steps :

(A) Data Collection (Step 1): As an initial step of our study, we
need to collect our experimental dataset which consists of a
set of real world bug reports from open source projects. To do
so, we mine the bug reports archive of seven selected open-
source systems. We have implemented a parser that takes every
bug report in the tracker as an input, then verifies whether it
was tagged as an accessibility reports. If so, its corresponding
information will be copied over to our database. We keep track
of the project containing the bug report along with all the its
metadata. It is important for us to keep as much information

Table 2: Statistics of the datasets.
System Platform #Non-Bug #Accessibility Start Date End Date

Reports Bug Reports
Firefox Firefox 25,000 250 29-09-2000 06-04-2020

Core 59,900 599 08-04-1997 05-04-2020
Mac 30,700 307 23-09-2016 05-03-2020

Chromium Windows 44,200 442 28-09-2016 05-03-2020
Chrome 41,200 412 08-05-2017 05-03-2020
Android 34,700 347 10-12-2012 05-03-2020

Apache NetBeans 21,000 210 14-07-2000 02-01-2018
Total 256,700 2,567

as possible about each bug report, so that the manual analysis
that would be coming later would be easier for the authors.

(B) Data Preprocessing (Step 2): After the data collection step,
we need to pre-process the text and only keep important textual
information, which can be used to train a model afterwards [8].
The results of this step put the report’s text into a format that
the classification algorithms can easily transform. This way, the
noise will be removed, allowing for informative featurization.
Note that we only pre-process the textual description of the
reports, and we do not alter any meta-data information.

(C) Data Classification (Step 3): In the final step , we apply ma-
chine learning techniques to build a classification model. In
particular, a binary classifier is used to classify accessibility
bug reports on five widely-used algorithms. We only used bug
report description to identify accessibility bug reports.

3.1 Step 1: Data Collection

Data collection is the first step in our study methodology. Our
goal is to analyze bug tracking systems of various open-source
software projects where their reports are publicly available. Our
study uses two of the large open-source bug report repositories,
Bugzilla [12], and Monorail [34]. We chose various project system
domains that range from web browsers, mobile platforms, and
desktop applications. We have also chosen these projects because
they contain accessibility frameworks, integrated as libraries, and
heavily used in their systems, to make their content and services
accessible. We collected more than 15 projects to be analyzed, as
our focus was only on bug reports identified as defect type. In order
to select a project repository to be studied, we selected projects
that support the type of bug report in their repositories, and we
eliminated the projects that do not support the information of
bug report types. From all the 15 projects, there are only seven
projects that supported the bug report types The projects that used
Bugzilla are Firefox-Platform 4, Firefox Core, Apache NetBeans,
and projects that use Monorail are Google Chromium platforms5
(Android, Windows, Chrome, and Macintosh).

After collecting all the bug reports, we discarded bug reports
that were reported in a different language than English, and bug
reports that were flagged as invalid, or not relevant. We provided
some examples in Table 3.

4https://bugzilla.mozilla.org/home
5https://bugs.chromium.org/p/chromium/issues/list
6https://bugs.chromium.org/p/chromium/issues/detail?id=1024836
7https://bugzilla.mozilla.org/show_bug.cgi?id=599707
8https://bugzilla.mozilla.org/show_bug.cgi?id=668458
9https://bugs.chromium.org/p/chromium/issues/detail?id=910827

W4A’22, April 25–26, 2022, Lyon, France Wajdi Aljedaani, Mohamed Wiem Mkaouer, Stephanie Ludi, Ali Ouni, and Ilyes Jenhani

MONORIAL Bug Reports

Open
Source
Projects

(7)

Bugzilla

 Filtering Bug
Reports Accessibility Tags

None-Accessibility
Tags

2,567

Decision Tree

Accessibility

Non-Accessibility

Machine Learning
Classifier

Data Preprocessing
Step

2

Text
Preprocessing

Data ClassificationStep
3

Data Collection
Step

1

Random Forest

Decision Jungle

Support Vector Machine

Neural Network

256,700

Accessbility Reports

Non- Accessbility Reports

Figure 1: Overview approach of our study.

Table 3: Examples of invalid bug reports.

Type Description
Non-English Girdiğim eğitim sitesi güvenlik hatası veriyor6

Testing testing a bug7

Non-Meaningful afdfsadsdsad8

Thanking Thank you9

As our accessibility bug reports were gathered based on their
accessibility tags by the developers reporting them, and validated
using the keywords that exist in the BBC guidelines [10, 45], we
followed the process of [27] to further verify the collected data,
which are referred to as accessibility bug reports. We randomly
selected a 12% sample of bug reports, i.e., 334 out of the 2,567 bug
reports. This quantity is equal to a sample size with a confidence
level10 of 95% and a confidence interval of 10. Two of the authors
performed the labeling process separately. Both authors were given
the same set of bug reports to label to either accessibility related or
not. The chosen reports were not previously exposed to the authors.
The analysis process took seven days to prevent exhaustion. The
authors had the ability to search online for any unknown references
in the reports. We cross-check results of the manual labeling to
calculate the ratio of agreement and disagreement between the
authors. For all cases of disagreement, a third author is requested
to re-label the instance and break the tie. We present an example
of an agreed on and disagreed on bug report. For the example of
the disagreed on bug report, the third author has considered this
to be a non-accessibility bug report, as it describes an error with
handlers of copying accessibility.

Agreed on Example: “Panning incorrect with Fullscreen
Magnifier Accessibility feature enabled while display
set in a non-standard tablet rotatio”11

10https://www.surveysystem.com/sscalc.htm#one
11https://bugs.chromium.org/p/chromium/issues/detail?id=1009329

Disagreed on Example: “Copy for accessibility per-
mission incorrect for some PDFs with revision 2 security
handlers”12

We adopted Cohen’s Kappa coefficient [14] to assess the inter-
rater agreement level for the categorical classes. We obtained an
agreement level of 0.83. According to Fleiss et al. [18], these agree-
ment values are considered to have an almost perfect agreement
(i.e., 0.61˘0.80).

To summarize, we only considered the bug report that is typed as
a defect or bug. We discarded the bug report that typed as enhance-
ment, task, feature, or patch. After finalizing our target projects,
we collected all bug reports archived in each of the selected project
systems. The total number of Accessibility Bug Reports (ABR) are
2,567 while the total number of non-accessibility bug reports are
256,700. Note that after we gathered all the defect bug reports in
each project, we randomly selected non-accessibility bug reports.
Table 2 illustrates the details of the collected data in the study.
Table 1 also showcases the keywords we encountered during our
manual analysis, and how they related to various types of accessi-
bility guidelines.

3.2 Data Preprocessing

Next, we text preprocessing (TP) the textual information in each
bug report in the description field. The bug report description 𝑑

can be mixed with words and different characters, for example,
comma, apostrophe, etc. In the text preprocessing, we clean up the
documents by removing the unhelpful elements of special char-
acters and stopping words such as “a”, “the”, “are”, etc. Then, we
use Natural Language Processing13 (NLP) for identifying the basis
of each word. Words can be written in different grammar styles,
but the meaning is similar. During this process, each token shall
be removed from appendices, and only the stem will remain. This

12https://bugs.chromium.org/p/chromium/issues/detail?id=989408
13https://nlp.stanford.edu/software/

On the Identification of Accessibility Bug Reports in Open Source Systems W4A’22, April 25–26, 2022, Lyon, France

process can help us to minimize the positive impact on the recall
performance of the results.

𝑑 = 𝐷𝑃𝑃 (𝑑) (1)

For example, 𝑑 is a bug report description, then 𝑑 is generated,
using 𝐷𝑃𝑃 . The 𝐷𝑃𝑃 process is explained as below:

Text Preprocessing (𝐷𝑃𝑃)

input (𝑑): ’Print dialog too large for screen when accessi-
bility features being used; needs to be resizable’a
1- Tokenization: In this step, we transform the textual
information "words" into a tokens list as each single token
will be processed separately.
[’Print’, ’dialog’, ’too’, ’large’, ’for’, ’screen’, ’when’, ’accessi-
bility’, ’features’, ’being’, ’used’, ’;’, ’needs’, ’to’, ’be’, ’resiz-
able’]
2- Numerical & Special Characters Removal: In this
part, all the numbers and special characters (punctuation)
will be eliminated, tags for instance ’;’ from the tokens list.
[’Print’, ’dialog’, ’too’, ’large’, ’for’, ’screen’, ’when’, ’accessi-
bility’, ’features’, ’being’, ’used’, ’needs’, ’to’, ’be’, ’resizable’]
3- Stop-Word Removal: is the process of deleting all the
common English words as well as reserved wordsb such
as "too", "for", "be", "to", "when", "need".
[’Print’, ’dialog’, ’large’, ’screen’, ’accessibility’, ’features’,
’used’, ’needs’, ’resizable’]
4- Lemmatization: In this step, we minimize the words’
derivationally to the root of the words, which helps remove
the inflection. For example prints, printing, printed,⇒ print,
features,⇒ feature.
[’Print’, ’dialog’, ’large’, ’screen’, ’access’, ’feature’, ’use’,
’size’]
5- Ouput(𝑑): This is the final step where all the characters
converted into lowercase and then merge all the tokens to
a single string.
’Print dialog large screen access feature use size’

ahttps://bugzilla.mozilla.org/show_bug.cgi?id=327939
bhttp://www.textfixer.com/resources/common-english-words.tx

3.3 Data Transformation

Givenmachine learning, all the algorithms used inmachine learning
are trained using feature vectors. The feature vector is a numerical
vector with data in numerical form [33]. The collected data that we
used in this study does not come in vector form. Therefore, those
data have to transform into feature vectors using feature extraction
before using the data to train the machine learning algorithms. To
transform the data to feature vector, we used the feature hashing
technique known as the Hashing trick. Feature hashing is a popular
and powerful technique in machine learning for handling spares
and high dimensional features [46]. It is applied to reduce the di-
mensionality of the analyzed data [40, 47]. The hashing function
does this transformation in the feature hashing technique. For ex-
ample, if we input a bug report description using the feature hashing

technique, it will output a fixed-length size of a hash value. Figure 2
shows an example of how feature hashing works.

There are several popular schemes for feature encoding or ex-
traction like Bag-of-words, TF-IDF, etc. However, there are issues
in the mentioned techniques, such as the curse of dimensionality
as well as semantic selection. Prior studies have shown that fea-
ture hashing is a robust approach to achieve fast similarity search
[22, 23, 43]. If we use a feature selection technique other than the
feature hashing technique in this study, it will select a subset from
the original features and reduce the parameter vector’s size, but
still, we need to map from string to integers. Nevertheless, if we
apply feature hashing, it will automatically do the mapping into a
hash function; thus, there is no need for mapping strings to integer.
Performing text hashing increases efficiency and scalability in the
classification of big data analytics.

3.4 Data Classification

The primary objective of the classification step is to train a binary
classifier that classifies whether a bug report is accessibility or
non-accessibility after learning from the bug report that we have
identified as an accessibility bug reports of all the different projects.
Data obtained from Bugzilla and Monorail archives for accessibility
bug reports was highly imbalanced; precisely, the number of non-
accessibility of bug reports is much higher than the accessibility
of bug reports. Imbalanced data restricts the standard deviation in
the majority of the classification approaches from operating well
with the lower classes (i.e., the class containing significantly lower
data). There are different machine learning methods designed to
solve this issue [21]—for instance, data resampling techniques, gra-
dient boosting techniques (tree-based models), and ensemble tech-
niques. Similar costing methods become computationally costly to
sample approaches, such as the Synthetic Minority Over-sampling
(SMOTE) [13]. Therefore, the main reason for selecting the ensem-
ble learning techniques in our study is that we can combine several
different classification methods to overcome imbalanced data.

3.5 Machine Learning Algorithms

Choosing a suitable classifier that can provide an optimal identifi-
cation for our study purpose is not a straightforward task [17]. Our
study addresses a binary classification (two-class) problems, as our
dataset is being classified into two classes, accessibility bug reports,
and non-accessibility bug reports. Since we have a dataset already
labeled as two classes, our methodology depends on supervised
machine learning algorithms to allocate each bug report into one of
the defined classes. We evaluated five different machine learning al-
gorithms to observe which one offers the most successful outcomes
for the classification of accessibility and bug reports. Specifically,
Decision Tree (DT), Random Forest (RF), Decision Jungle (DJ), Sup-
port Vector Machine (SVM), and Neural Network (NN). We selected
these algorithms because they are widely used in the literature of
software defect classification [20, 28, 36, 42, 49], also they are stated
to work well with the imbalance datasets, and NLP in literature
[19, 25]. To enable replication of our findings, we present the cho-
sen key parameters for the selected machine learning algorithms
techniques, as described in the Table 4.

http://www.textfixer.com/resources/common-english-words.tx

W4A’22, April 25–26, 2022, Lyon, France Wajdi Aljedaani, Mohamed Wiem Mkaouer, Stephanie Ludi, Ali Ouni, and Ilyes Jenhani

Keys

Hashed

Plain Text

01

Decision Tree

Testing set

Hashing
Function

Hashing Algorithm

Hashed Text

02 03 04 05 06 07 08 09 10

work fix text blind labellabel seevisualhearfindaccess

Bug Reports

Description

P
rep

ro
cessin

g

Feature Hashing

Data Preparation

D
ata S

p
lit

Training Set

Test Set

Trained
Model

Decision Jungle

Support Vector Machine

Neural Network

SaveTraining set

Cross
Validation

Classifier

N
o

n
-A

ccessib
ility B

u
g

A
ccessib

ility B
u

g

Random Forest

Training
Algor ithms

Information
Extraction

Predict

Predict

Data Transformation

Figure 2: Overview approach of data preparation and data transformation.

3.6 Evaluation Metrics

This study used a 10-fold cross-validation method to train the model
to assess the variability and reliability. For individual models, we
distributed our dataset in 10 folds of the same size bug reports.
Afterward, we performed 10 tests with separate data sets, during
which 9 folds were utilized in each assessment as training sets and
the remaining fold used as test sets. Then, we evaluate these ma-
chine learning models’ performance in terms of accuracy, precision,
recall, and 𝐹1 score. These evaluation parameters are mostly used
in binary classification problems, as in our case [20, 48]. For each
evaluation metric, the score rank is between 0.0 and 1.0, where 0.0
represents the classifier’s lowest performance, while the 1.0 score
represents the classifier’s highest performance.

3.6.1 Accuracy provides the score, which shows that how much
a classifier is accurate. It can be defined as the total number of
correct predictions divided by the total number of predictions. It
works well on a balanced dataset.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(2)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3)

• TP is the classification made by a classifier as "Yes" against
an example, and the actual label of the example is also "Yes".

• TN is the classification made by a classifier as "No" against
an example, and the actual label of the example is also "No".

• FP is the classification made by a classifier as "Yes" against
an example, but the actual label of the example was "No".

• FN is the classification made by a classifier as "No" against
an example, but the actual label of the example was "Yes".

3.6.2 Precision is also known as a positive predictive value,
which is the fraction of relevant examples among the retrieved
examples. It tells us the number of correct positive classifications
from the classifier’s total number of positive classifications. It can
be calculated as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4)

3.6.3 Recall is also known as sensitivity. It tells us how many
correct positive predictions are made by a classifier from the total
number of actual positive predictions. It can be calculated as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5)

3.6.4 F-score is also known as the 𝐹1 score or F measure. It is a
harmonic mean of precision and recall. It can be calculated as:

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(6)

3.6.5 AUC stands for the area under the curve, AUC is a perfor-
mance measurement for classification problems. It tells us about
the successful classification rate of a classifier.

4 Study Results
RQ1: What is the accuracy of different models in detecting bug re-
ports?

Approach. In this research question, we double the number of
the accessibility bug report for each project to run the experiment
of RQ1. For instance, the Firefox platform contains 250 accessibility
bug reports (ABR), so we double the number of non-accessibility
bug reports (Non-ABR X2) to become 500 bug reports as shown in

On the Identification of Accessibility Bug Reports in Open Source Systems W4A’22, April 25–26, 2022, Lyon, France

Table 4: Summary of the hyperparameter in machine learning algorithm.

Algorithm Hyperparameter Default Description
max_n_leaf 20 The maximum number of leaves per tree

Decision Tree min_samples_leaf 10 The minimum number of samples per leaf node
learning_rate 0.2 Learning rate
n_tree 100 The number of trees constructed
n_estimators 8 The number of decision trees

Decision Forest max_depth 32 The maximum depth of the decision trees
n_samples_leaf 125 The number of random splits per node
min_samples_split 1 The minimum number of samples per leaf node
n_estimators 8 The number of decision directed acyclic graphs

Decision Jungle max_depth 32 The maximum depth of the decision directed acyclic graphs
max_width 128 The maximum of the decision directed acyclic graphs
n_optimiz 2048 The number of optimization steps per decision directed acyclic graphs layer
n_iter 1 The number of iterations

SVM Lambda 0.001 The Lambda
n_nodes 100 The number of hidden nodes

Neural Network learning_rate 0.1 Learning rate
n_learning_rate 100 The Number of learning iterations
learning_rate_weights 0.1 The initial learning weights diameter
momentum 0 The momentum

Table 5: Distribution of the number of non-accessibility bug reports dataset divided in ten iterations.
Platforms #ABR #Non #Non #Non #Non #Non #Non #Non #Non #Non #Non #Non

ABR X2 ABR X10 ABR X20 ABR X30 ABR X40 ABR X50 ABR X60 ABR X70 ABR X80 ABR X90 ABR X100
Firefox 250 500 2,500 5,000 7,500 10,000 12,500 15,000 17,500 2,000 22,500 25,000
Core 599 1,198 5,990 11,980 17,970 23,960 29,950 35,940 41,930 47,920 53,910 59,900
Mac 307 614 3,070 6,140 9,210 12,280 15,350 18,420 21,490 24,560 27,630 30,700

Windows 442 884 4,420 8,840 13,260 17,680 22,100 26,520 30,940 35,360 39,780 44,200
Chrome 412 824 4,120 8,240 12,360 16,480 20,600 24,720 28,840 32,960 37,080 41,200
Android 347 694 3,470 6,940 10,410 13,880 17,350 20,820 24,290 27,760 31,230 34,700
NetBeans 210 420 2,100 4,200 6,300 8,400 10,500 12,600 14,700 16,800 18,900 21,000
Total 2,567 5,134 25,670 51,340 77,010 102,680 128,350 154,020 179,690 205,360 231,030 256,700

the Table 5. Then, we conducted a 10-folds cross-validation [24]
procedure to split our data into training data and evaluation data on
the five machine learning models. We use cross-validation because
the dataset we used in this study is an imbalanced dataset. Therefore
cross-validation is a more appropriate approach as compared to the
conventional train test split approach. To evaluate our result in RQ1,
we used our performance evaluation accuracy, precision, recall, F
score, and AUC, which are described in detail in Section 3.6.

Results. The result of all machine learning models show in Ta-
ble 6. The model performs differently in different scenarios, such as
when we apply the machine learning model for the Firefox project
bug report classification. Neural networks outperform all other
models in accuracy, precision, recall, F-score, and AUC by achiev-
ing the 0.91, 0.94, 0.88, 0.90, and 0.97. Decision Tree is the only
model with the same accuracy, recall, and F score as a Neural Net-
works. However, Neural Network achieves high precision and AUC
score than all other models; thus, Neural Networks is significant in
the case of the Firefox project.

Decision Tree outperforms all other models in terms of all evalu-
ation parameters in the Core project bug report classification. The
Decision Tree achieves 0.92 accuracy, precision, recall, F score, and
0.96 ACU score, while SVM performs poorly in this case with a
0.87 accuracy score. Decision Tree also performs well in the Win-
dows project and achieves the 0.89 accuracy score, same as in Core
project bug reports classification, and SVM is the worst performer
than all other Windows project models.

Figure 3: Distribution of classification accuracy metric in all
classifiers.

In Netbeans and Android bug reports classification, Random For-
est and Neural Networks perform significantly than other models
and achieve equal accuracy. In terms of the AUC neural network,
lead the table with a 0.92 score. Mac project bug reports classifica-
tion is the only case where Decision Jungle achieves high accuracy.
In this case, Random Forest also achieves the same accuracy as
Decision Jungle, so both share their Mac case’s significant perfor-
mance.

W4A’22, April 25–26, 2022, Lyon, France Wajdi Aljedaani, Mohamed Wiem Mkaouer, Stephanie Ludi, Ali Ouni, and Ilyes Jenhani

Discussion. According to the result, all tree-based ensemble
models such as Decision Tree, Random Forest, and Decision Jungle
perform better than the linear model SVM, except the case on the
Chrome project. The reason for the better performance of the tree-
based ensemble model is that when the number of base learners
work on a single problem, it performs better than an individual
learning model. Random Forest and Decision Jungle are ensem-
ble models that make a final prediction based on their numbers
of decision tree predictions using voting criteria. Random Forest
is better than Decision Jungle in some cases where data is more
imbalanced because Random Forest controls the over-fitting prob-
lem on imbalanced data more efficiently [41]. After all, each tree in
Random Forest is constructed on a bag, and each bag is a uniform
random sample from the original dataset with the replacement of
samples, that the reason tree in Random Forest is biased in the same
direction and magnitude (on average) by class imbalance.

On the other linear model, SVM shows poor performance in all
cases except chrome project in term of the accuracy, as shown in
Figure 3 because its kernel trick is not to consider more suitable
to boost the performance on the small and imbalanced dataset as
compare to a tree-based model that can perform better also on
small data size. Neural Network is also performed better in all cases
and beats the SVM, where it reaches 0.95 accuracy in the Chrome
project. There is no significant difference in the tree-based model
and Neural Network model performance. To compare all classifiers
results, Random Forest and Decision tree are a more fitting model
as compare to others. In the case of Chrome, it achieves the highest
accuracy of all this study 0.97.

𝑅𝑄1 Summary

We find that tree-based and Neural Networks classifiers
perform better than linear model (SVM) classifier when
classifying accessibility bug reports. However, Decision
Tree’s performance significantly outperforms all other
classifiers in terms of evaluation parameters. In terms of
projects, NetBeans and Android bug reports are more cor-
rectly classified in comparison with other projects.

RQ2:What is the size of the training dataset needed for the classi-
fication to effectively identify accessibility bug reports?

Approach. This question aims to investigate the size of the
dataset needed for the classifiers to classify the accessibility bug
reports. To examine this, we performed the RQ2 by incrementally
increase the dataset size step by step. We apply this approach to
ten iterations. For the first iteration, we randomly selected 10 ac-
cessibility bug reports, 100 non-accessibility bug reports. Then we
used the Random Forest classifier to examine the outputs of the
study experiment. We performed the same approach in the second
iteration, but we increased the dataset (double size) as the first
iteration. We randomly selected 20 accessibility bug reports and
200 non-accessibility bug reports. We apply this method until we
reach the ten iterations with 100 accessibility bug reports and 1000
non-accessibility bug reports. We separately examined each project
to find out if different projects needed less or more dataset to clas-
sify. For the evaluation parameters of RQ2, we used F1-Score, since
accuracy is not considered the best parameters because we have an

Table 6: The results of the classifiers.
Project Classifier Mean

Accuracy Precision Recall F-Score AUC
Decision Tree 0.91 0.92 0.88 0.90 0.95
Random Forest 0.90 0.94 0.85 0.89 0.96

Firefox Decision Jungle 0.90 0.93 0.86 0.87 0.93
SVM 0.87 0.88 0.86 0.87 0.93

Neural Network 0.91 0.94 0.88 0.90 0.97
Decision Tree 0.92 0.92 0.92 0.92 0.96
Random Forest 0.89 0.90 0.88 0.89 0.96

Core Decision Jungle 0.89 0.91 0.87 0.89 0.94
SVM 0.87 0.87 0.88 0.87 0.94

Neural Network 0.90 0.90 0.89 0.89 0.95
Decision Tree 0.84 0.83 0.85 0.84 0.92
Random Forest 0.86 0.88 0.82 0.85 0.91

Mac Decision Jungle 0.86 0.92 0.79 0.85 0.91
SVM 0.82 0.84 0.80 0.81 0.89

Neural Network 0.84 0.86 0.83 0.84 0.90
Decision Tree 0.90 0.90 0.90 0.90 0.95
Random Forest 0.80 0.89 0.87 0.88 0.94

Chrome Decision Jungle 0.89 0.93 0.84 0.88 0.93
SVM 0.82 0.84 0.80 0.82 0.90

Neural Network 0.84 0.85 0.83 0.84 0.92
Decision Tree 0.89 0.89 0.89 0.89 0.95
Random Forest 0.88 0.90 0.85 0.87 0.94

Windows Decision Jungle 0.88 0.92 0.84 0.88 0.94
SVM 0.85 0.86 0.85 0.85 0.92

Neural Network 0.87 0.88 0.87 0.87 0.94
Decision Tree 0.92 0.92 0.93 0.92 0.96
Random Forest 0.93 0.92 0.93 0.93 0.96

Android Decision Jungle 0.92 0.93 0.89 0.91 0.95
SVM 0.87 0.88 0.87 0.87 0.93

Neural Network 0.92 0.92 0.93 0.92 0.96
Decision Tree 0.91 0.92 0.91 0.91 0.96
Random Forest 0.93 0.96 0.90 0.93 0.97

NetBeans Decision Jungle 0.92 0.94 0.90 0.92 0.96
SVM 0.88 0.91 0.86 0.88 0.96

Neural Network 0.93 0.94 0.92 0.93 0.98

imbalanced data issue by incrementally increasing each iteration
by adding the non-ABR reports.

To assess this RQ2, we performed 10-folds cross-validation tech-
niques. We collected all the results of the F1-Score for all the ten
iterations, as shown in Figure 4. When the F1-Scores present sta-
bility in the works, we consider the number of accessibility bug
reports needed for classification to classify the accessibility bug
reports.

Results. The machine learning model performance depends on
the size of data and the feature correlation with the target class.
In this study, the experiment performs on different project dataset
using machine learning algorithms to analyze the impact of the
dataset size on model performance. The Figure 4 show the perfor-
mance random forest on the different project data. As in Figure 4 on
the X-axis number show the iterations, we increase the size of data
for each class after each iteration. In the first iteration, when we
train random forest, the first project dataset contains ten records
for the ABR and 100 for non-ABR, and on the second iteration,
there are 20 records for ABR and 200 records for non-ABR, and this
procedure applied to all of the ten iterations. If we analyze random
forest performance in each project, we can see that it is more con-
sistent as we increase the dataset size. Random forest performance
evaluates using the F1 score because the ratio of target classes (ABR
& non-ABR) is unequal in the dataset. After all, the F1 score can
better interpret the machine learning model performance [8].

On the Identification of Accessibility Bug Reports in Open Source Systems W4A’22, April 25–26, 2022, Lyon, France

Figure 4: Distribution of classification F1-score in random classifier when incrementally increase accessibility bug reports in
ten iterations.

The Android project model performs very poorly in the first
iteration when there are only ten records in the dataset, but as the
dataset size increases model performs gradually, and after six itera-
tions, it becomes more consistent, as shown in Figure 4. Random
forest performance on the Chrome project is different as compared
to Android. Random forest performs extraordinary only after one
iteration and achieves the 0.87% score, which is the highest score
on the second iteration compared to the other models. Random
forest perform more accurately in chrome second iteration even on
a small dataset, and its reason can be a good correlation between
the features and the target class in the chrome dataset. There is little
fluctuation in the ninth and 10th iteration in the F1 score on the
chrome dataset, as illustrated in Figure 4. Random forest becomes
consistent in performance after the fourth iteration in Core and
Mac dataset and maintains its consistency until the tenth iteration.

NetBeans and Firefox datasets also containmore better-correlated
features for target classes because random forest performs very
well on these two projects only after three iterations and becomes
a consistent performer after the third iteration. The performance
of random forest is different on Windows project data as compare
to the others. The Window project dataset model performed very
poorly and achieved the highest 0.63% F1 score from all ten iter-
ations, but the model becomes consistent in the score after the
seventh iteration, which shows that the model is more accurate
when dataset size becomes large.

𝑅𝑄2 Summary

We find that to achieve a performance equivalent to 93% of
the high F-measure score, only one fold of bug reports is
required for the training of the binary classifier. In terms
of projects, NetBeans and Android bug reports seem to
contain the highest number of discriminative keywords,
yielding in better accuracy of the classification, in compar-
ison with other projects.

5 Threats to Validity

This section presents various threats to the validity of our study.
Threats are divided into three main categories: sampling bias, and
external validity.

Sampling Bias.Any classified experiment is challenged because
what works in one field may not work in a different one. To gen-
eralize our findings, we use several projects in various domains
with labeled bug reports. In particular, we performed our classifier
on mobile and desktop applications. Another potential concern
of bias is the choice of classifiers. Despite the numerous learning
algorithms existing, there are still many to consider. Our choice is
directed by the objective to manage a reasonable balance between
existing and creative techniques. To limit this threat, the subset
algorithms selected for this research are based on a comparative
analysis of 22 algorithms [26], which indicated that the overall

W4A’22, April 25–26, 2022, Lyon, France Wajdi Aljedaani, Mohamed Wiem Mkaouer, Stephanie Ludi, Ali Ouni, and Ilyes Jenhani

seventeen algorithms’ results were not significantly different. We
utilized five of the seventeen algorithms. Furthermore, we also
chosen algorithms widely used in the literature of the software
classification [20, 28, 36, 42, 49], and operate well with the imbal-
ance datasets and NLP in literature [19, 25]. We believe that our
study contains the representation of various fields, such as machine
learning, topic modeling, and text mining.

External Validity. Our build classifier is trained and evaluated
in English-language bug reports. The proposed approach is not
sufficient or does not work in other languages for the bug reports.
Furthermore, we applied our classifier on open-source systems due
to its availability. It could generalize the findings if we can use
commercial/industrial projects since the quality level of bug reports
varies.

6 Conclusion
In this paper, we tackled the detection of accessibility bug reports
as a binary classification problem. We challenged various classifiers
using a large set of reports, exported from multiple open-source
projects. Our experiments show that the Decision Tree’s perfor-
mance significantly outperforms all other classifiers in terms of
evaluation parameters.

In the future, we plan to study the applicability of our approach to
other projects developed in different programming languages, and
to other domains. Another potential research direction is to use the
current findings to build a model that handles the class imbalance
problem, in the context where the number of accessibility bug
reports becomes a minority class, which hinders the learning of its
discriminative features.

References
[1] Afnan A Al-Subaihin, Atheer S Al-Khalifa, and Hend S Al-Khalifa. 2013. Accessi-

bility of mobile web apps by screen readers of touch-based mobile phones. In
International Conference on Mobile Web and Information Systems. Springer, 35–43.

[2] Wajdi Aljedaani and Yasir Javed. 2018. Bug reports evolution in open source
systems. In 5th International Symposium on Data Mining Applications. Springer,
63–73.

[3] Wajdi Aljedaani, Yasir Javed, and Mamdouh Alenezi. 2020. Lda categorization of
security bug reports in chromium projects. In Proceedings of the 2020 European
symposium on software engineering. 154–161.

[4] Wajdi Aljedaani, Yasir Javed, and Mamdouh Alenezi. 2020. Open Source Systems
Bug Reports: Meta-Analysis. In Proceedings of the 2020 The 3rd International
Conference on Big Data and Education. 43–49.

[5] Wajdi Aljedaani, Meiyappan Nagappan, Bram Adams, and Michael Godfrey. 2019.
A comparison of bugs across the iOS and Android platforms of two open source
cross platform browser apps. In 2019 IEEE/ACM 6th International Conference on
Mobile Software Engineering and Systems (MOBILESoft). IEEE, 76–86.

[6] Wajdi Aljedaani, Furqan Rustam, Stephanie Ludi, Ali Ouni, and Mohamed Wiem
Mkaouer. 2021. Learning Sentiment Analysis for Accessibility User Reviews. In
2021 36th IEEE/ACM International Conference on Automated Software Engineering
Workshops (ASEW). IEEE, 239–246.

[7] Bader Alkhazi, Andrew DiStasi, Wajdi Aljedaani, Hussein Alrubaye, Xin Ye, and
Mohamed Wiem Mkaouer. 2020. Learning to rank developers for bug report
assignment. Applied Soft Computing 95 (2020), 106667.

[8] Eman Abdullah AlOmar, Wajdi Aljedaani, Murtaza Tamjeed, Mohamed Wiem
Mkaouer, and Yasmine N El-Glaly. 2021. Finding the needle in a haystack: On
the automatic identification of accessibility user reviews. In Proceedings of the
2021 CHI conference on human factors in computing systems. 1–15.

[9] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues
in Android apps: state of affairs, sentiments, and ways forward. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 1323–1334.

[10] BBC. 2020. The BBC Standards and Guidelines for Mobile Accessibility. https:
//www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile.

[11] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan Koduru.
2013. An empirical analysis of bug reports and bug fixing in open source android
apps. In 2013 17th European Conference on SoftwareMaintenance and Reengineering.
IEEE, 133–143.

[12] Bugzilla. 2020. Bugzilla Issue Tracker). https://www.bugzilla.org/.
[13] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[14] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[15] Marcelo Medeiros Eler, Leandro Orlandin, and Alberto Dumont Alves Oliveira.
2019. Do Android app users care about accessibility? an analysis of user reviews
on the Google play store. In Proceedings of the 18th Brazilian Symposium on
Human Factors in Computing Systems. 1–11.

[16] Fan Fang, John Wu, Yanyan Li, Xin Ye, Wajdi Aljedaani, and Mohamed Wiem
Mkaouer. 2021. On the classification of bug reports to improve bug localization.
Soft Computing 25, 11 (2021), 7307–7323.

[17] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim.
2014. Do we need hundreds of classifiers to solve real world classification
problems? The journal of machine learning research 15, 1 (2014), 3133–3181.

[18] Joseph L Fleiss, Bruce Levin, Myunghee Cho Paik, et al. 1981. The measurement
of interrater agreement. Statistical methods for rates and proportions 2, 212-236
(1981), 22–23.

[19] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and
Francisco Herrera. 2011. A review on ensembles for the class imbalance problem:
bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 42, 4 (2011), 463–484.

[20] Katerina Goseva-Popstojanova and Jacob Tyo. 2018. Identification of security
related bug reports via text mining using supervised and unsupervised classifica-
tion. In 2018 IEEE International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 344–355.

[21] Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and
Gong Bing. 2017. Learning from class-imbalanced data: Review of methods and
applications. Expert Systems with Applications 73 (2017), 220–239.

[22] Jiyong Jang, David Brumley, and Shobha Venkataraman. 2011. Bitshred: feature
hashing malware for scalable triage and semantic analysis. In Proceedings of the
18th ACM conference on Computer and communications security. 309–320.

[23] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. 2016. Using dynamic and con-
textual features to predict issue lifetime in GitHub projects. In 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR). IEEE, 291–302.

[24] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, Vol. 14. Montreal, Canada, 1137–1145.

[25] Bartosz Krawczyk. 2016. Learning from imbalanced data: open challenges and
future directions. Progress in Artificial Intelligence 5, 4 (2016), 221–232.

[26] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. 2008.
Benchmarking classification models for software defect prediction: A proposed
framework and novel findings. IEEE Transactions on Software Engineering 34, 4
(2008), 485–496.

[27] Stanislav Levin and Amiram Yehudai. 2019. Towards software analytics: Modeling
maintenance activities. arXiv preprint arXiv:1903.04909 (2019).

[28] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-
domForest. R news 2, 3 (2002), 18–22.

[29] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and detect-
ing performance bugs for smartphone applications. In Proceedings of the 36th
international conference on software engineering. 1013–1024.

[30] Amiya Kumar Maji, Kangli Hao, Salmin Sultana, and Saurabh Bagchi. 2010.
Characterizing failures in mobile oses: A case study with android and symbian.
In 2010 IEEE 21st International Symposium on Software Reliability Engineering.
IEEE, 249–258.

[31] Norbert Markus, Szabolcs Malik, Zoltan Juhasz, and András Arató. 2012. Accessi-
bility for the blind on an open-source mobile platform. In International Conference
on Computers for Handicapped Persons. Springer, 599–606.

[32] Stuart McIlroy, Nasir Ali, Hammad Khalid, and Ahmed E Hassan. 2016. Analyzing
and automatically labelling the types of user issues that are raised in mobile app
reviews. Empirical Software Engineering 21, 3 (2016), 1067–1106.

[33] TomMitchell. 1997. Introduction to machine learning. Machine Learning 7 (1997),
2–5.

[34] Monorail. 2020. Monorail Issue Tracker). https://bugs.chromium.org/p/
chromium/issues/list.

[35] Kevin Moran, Richard Bonett, Carlos Bernal-Cárdenas, Brendan Otten, Daniel
Park, and Denys Poshyvanyk. 2017. On-device bug reporting for android ap-
plications. In 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft). IEEE, 215–216.

[36] Moein Owhadi-Kareshk, Sarah Nadi, and Julia Rubin. 2019. Predicting Merge
Conflicts in Collaborative Software Development. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE,
1–11.

[37] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio,
Gerardo Canfora, and Harald C Gall. 2015. How can i improve my app? classifying
user reviews for software maintenance and evolution. In 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 281–290.

https://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
https://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
https://www.bugzilla.org/
https://bugs.chromium.org/p/chromium/issues/list
https://bugs.chromium.org/p/chromium/issues/list

On the Identification of Accessibility Bug Reports in Open Source Systems W4A’22, April 25–26, 2022, Lyon, France

[38] Fayola Peters, Thein Tun, Yijun Yu, and Bashar Nuseibeh. 2017. Text filtering
and ranking for security bug report prediction. IEEE Transactions on Software
Engineering (2017).

[39] Nasir Safdari, Hussein Alrubaye, Wajdi Aljedaani, Bladimir Baez Baez, Andrew
DiStasi, and Mohamed Wiem Mkaouer. 2019. Learning to rank faulty source
files for dependent bug reports. In Big data: learning, analytics, and applications,
Vol. 10989. International Society for Optics and Photonics, 109890B.

[40] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and SVN
Vishwanathan. 2009. Hash kernels for structured data. The Journal of Machine
Learning Research 10 (2009), 2615–2637.

[41] R Shreyas, DM Akshata, BS Mahanand, B Shagun, and CM Abhishek. 2016. Pre-
dicting popularity of online articles using random forest regression. In 2016
Second International Conference on Cognitive Computing and Information Process-
ing (CCIP). IEEE, 1–5.

[42] Qasim Umer, Hui Liu, and Yasir Sultan. 2018. Emotion based automated priority
prediction for bug reports. IEEE Access 6 (2018), 35743–35752.

[43] Solomon Ogbomon Uwagbole, William J Buchanan, and Lu Fan. 2017. Applied
machine learning predictive analytics to SQL injection attack detection and
prevention. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM). IEEE, 1087–1090.

[44] Christopher Vendome, Diana Solano, Santiago Liñán, and Mario Linares-Vásquez.
2019. Can everyone use my app? An Empirical Study on Accessibility in Android
Apps. In 2019 IEEE International Conference on SoftwareMaintenance and Evolution
(ICSME). IEEE, 41–52.

[45] W3C. 2020. Web Content Accessibility Guidelines (WCAG) 2.1. https://www.w3.
org/TR/WCAG21/.

[46] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. 2009. Feature hashing for large scale multitask learning. In Proceedings
of the 26th annual international conference on machine learning. 1113–1120.

[47] William S Yerazunis. 2003. Sparse binary polynomial hashing and the CRM114
discriminator. In 2003 Cambridge Spam Conference Proceedings, Vol. 1.

[48] Yun Zhang, David Lo, Xin Xia, Bowen Xu, Jianling Sun, and Shanping Li. 2015.
Combining software metrics and text features for vulnerable file prediction. In
2015 20th International Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, 40–49.

[49] Yaqin Zhou and Asankhaya Sharma. 2017. Automated identification of security
issues from commit messages and bug reports. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. 914–919.

https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Classification in Open-Source Repository
	2.2 Accessibility in Open-Source Applications

	3 Methodology
	3.1 Step 1: Data Collection
	3.2 Data Preprocessing
	3.3 Data Transformation
	3.4 Data Classification
	3.5 Machine Learning Algorithms
	3.6 Evaluation Metrics

	4 Study Results
	5 Threats to Validity
	6 Conclusion
	References

