
On Preserving the Behavior in Software Refactoring: A
Systematic Literature Review

1. Running Example

In this section, we demonstrate an example that will be used throughout
the paper. The example in Listing 1 and 2 illustrates unexpected behavioral
changes performed by Eclipse. The original and resulting program are shown
with a diff view in which green is for inserts and red is for deletions.

Consider class Employee and its subclass Salesman as illustrated in Listing 1.
Class Salesman declares methods setSSN, getSSN, getFullName, getSalary,
getSomething, toString, yearlySalary, yearlySalaryIncrease, displayYearlySalaryIncrease,
test1, and test2. Running the method getSomething in Listing 1 yields
1000.33. Suppose we want to apply the PullUpMethod refactoring using Eclipse
to move method getSomething from Salesman to Employee. This method con-
tains a reference to Employee.getSalary using the super access. The use of
Eclipse will produce the program presented in Listing 2. Although method
getSomething is moved to the superclass and super is updated to this, a
behavioral change was introduced (i.e., method test1 in the target program
(Listing 2) yields 2000.90 instead of 1000.33).

2. Examples of the Behavior Preservation Approaches

To summarize the behavior preservation approach topics covered by the
primary studies, we derived the keywords of each study from its title. To get
a high-level picture of the covered topics, we generated a word cloud of paper
titles as depicted in Figure 1.

2.1. Refactoring Formalisms and Techniques
A detailed overview of refactoring operations and their overlapped between

strategies is depicted in Tables 1 and 2.

2.1.0.1. Graph Transformation. We summarize the formal properties by show-
ing the correspondence between refactoring and graph transformation as shown
in Table 3.

Preprint submitted to Journal of LATEX Templates May 24, 2021

Listing 1: Original Program
public class Employee {

public double yearlySalary ;
public String getName ()
{ return "John ";}
public double getSalary ()
{ return 1000.33;}
public double yearlySalary () {

return yearlySalary =
(getSalary () * 12);

}
}

public class Salesman extends Employee
{ public String ssn;
public void setSSN (String setSNN)
{ ssn= setSNN ;}
public String getSSN ()
{ return ssn ;}
public String getFullName ()
{ return "John Smith ";}
public double getSalary ()
{ return 2000.99; }

+ public double getSomething () {
+ return super . getSalary ();
+ }

public String toString () {
return " Employee [Salary ="
+ getSalary ()+"]";

}
public double yearlySalary () {

double yearlySalary ;
yearlySalary =(getSalary ()*12);
return yearlySalary ;

}
public double yearlySalaryIncrease ()
{ double yearlySalaryIncrease ;

yearlySalaryIncrease =
(((yearlySalary ()*
(0.1)) + yearlySalary ()));
return yearlySalaryIncrease ;

}
public void
displayYearlySalaryIncrease () {

System .out. printf
(" Yearly Salary Increase
is "+ yearlySalaryIncrease ());

}
public double test1 () {

return getSomething ();
}
public String test2 () {

return getName ();
}

}
public class TestRefactoring {

public static void main
(String [] args) {
Salesman s=new Salesman ();
System .out. println (s. toString ());

+ System .out. println (s. test1 ());
System .out. println (s. test2 ());
}

}

Listing 2: Resulting Program
public class Employee {

public double yearlySalary ;
public String getName ()
{ return "John ";}
public double getSalary ()
{ return 1000.33;}
public double yearlySalary () {

return yearlySalary =
(getSalary () * 12);

}
+ public double getSomething () {
+ return this. getSalary ();
+ }
}

public class Salesman extends Employee
{ public String ssn;
public void setSSN (String setSNN)
{ ssn= setSNN ;}
public String getSSN ()
{ return ssn ;}
public String getFullName ()
{ return "John Smith "; }
public double getSalary ()
{ return 2000.99;}

- public double getSomething () {
- return super . getSalary ();
- }

public String toString () {
return " Employee [Salary ="
+ getSalary ()+"]";

}
public double yearlySalary () {

double yearlySalary ;
yearlySalary =(getSalary ()*12);
return yearlySalary ;

}
public double yearlySalaryIncrease ()
{ double yearlySalaryIncrease ;

yearlySalaryIncrease =
(((yearlySalary ()*
(0.1)) + yearlySalary ()));
return yearlySalaryIncrease ;

}
public void
displayYearlySalaryIncrease () {

System .out. printf
(" Yearly Salary Increase
is "+ yearlySalaryIncrease ());

}
public double test1 () {

return getSomething ();
}
public String test2 () {

return getName ();
}

}
public class TestRefactoring {

public static void main
(String [] args) {
Salesman s=new Salesman ();
System .out. println (s. toString ());

+ System .out. println (s. test1 ());
System .out. println (s. test2 ());
}

}

2

Table 1: Behavior Preservation Approaches and its Strategies in Related Work.

Study Year Approach Strategy Refactorings
Roberts et al. [1] 1997 Refactoring Safety Tool Precondition Checking Add Variable

Rename Variable
Remove Variable
Push Down Variable into Subclass(es)
Pull Up Variable from Subclass(es)
Create Accessors for a Variable
Change all Variable refs to Accessors Calls
Create New Class
Rename Class
Remove Class
Add Method
Rename Method
Remove Method
Push Down Method into Subclass(es)
Pull Up Method from Subclass(es)
Add Parameter to Method
Move Method across Object Boundary
Extract Code as Method

Mens et al. [2] 2003 Graph Transformation Graph Rewriting Rules & Expressions Encapsulate Field
Pull Up Method

Tip et al. [3] [4] 2003,2011 Type Constraints Constraint Rules Extract Interface
Pull Up Method
Pull Up Field
Push Down Methods
Push Down Field
Extract Subclass
Generalize Type

Garrido and Meseguer [5] 2006 Formal Specification & Verification Rewriting Logic Push Down Method
Pull Up Field
Rename Temporary

Straeten et al. [6] 2007 Model Transformation Description Logic Move States into Orthogonal Composite State
Flatten States
Add Subclass

Massoni et al. [7] 2008 Model Transformation Laws of Programming Introduce Generalization
Introduce Signature
Introduce Subsignature
Introduce Relation
Remove Optional Relation
Remove Scalar Relation
Split Relation

Soares et al. [8] [9] [10][11] 2009,2010,2011 Refactoring Safety Tool Test Suite Generation Rename Class
Rename Field
Rename Local Variable
Rename Intertype Declaration
Rename Variable
Rename Method
Encapsulate Field
Extract Method
Extract Class
Push Down Method
Move Class
Change Method Signature
Pull Up Method
Extract Exception Handler
Infer Generic Type
Replace Deprecated Code
Inline Method

Ubayashi et al. [12] 2008 Contract-based Verification Contract Writing Language Change Abstract Class to Interface
Extract Feature into Aspect
Extract Fragment into Advice
Extract Inner Class to Standalone
Inline Class within Aspect
Inline Interface within Aspect
Move Field from Class to Inter-type
Move Method from Class to Inter-type
Replace Implements with Declare Parents
Split Abstract Class into Aspect and Interface
Extend Marker Interface with Signature
Generalize Target Type with Marker Interface
Introduce Aspect Protection
Replace Inter-type Field with Aspect Map
Inter-type Method with AspectMethod
Tidy Up Internal Aspect Structure
Extract Superaspect
Pull Up Advice
Pull Up Declare Parents
Pull Up Inter-type Declaration
Pull Up Marker Interface
Pull Up Pointcut

Schäfer et al. [13] 2008 Naming Binding Preservation Invariant-based Rename
Tsantalis and Chatzigeorgiou [14] 2009 Precondition Examination Precondition Checking Move Method
Schäfer and Moor [15] 2010 Specification-based Refactoring Dependency Preservation Convert Anonymous To Nested

Language Extension Extract Class
Microrefactorings Extract Constant

Extract Temp
Inline Constant
Inline Temp
Introduce Factory
Introduce Indirection
Introduce Parameter
Introduce Parameter Object
Move Inner to Toplevel
Move Instance Method
Move Members
Promote Temp to Field
Pull Up
Push Down
Self-Encapsulate Filed

Tsantalis and Chatzigeorgiou [16] 2010 Refactoring Safety Tool Precondition Checking

3

Table 2: continued from previous page.

Study Year Approach Strategy Refactorings
Overbey and Johnson [17] 2011 Differential Precondition Checking Preservation Analysis Algorithm Rename

Move
Introduce USE
Change Function Signature
Introduce Implicit None
Add Empty Subprogram
Safe Delete
Pull Up Method
Copy Up Method
Extract Local Variable
Add Local Variable
Introduce Block
Insert Assignment
Move Expression
Extract Function
Add Empty Function
Populate Function
Replace Expression

Soares et al. [18], Mongiovi et al. [19] 2011,2017 Overly Strong Preconditions Identification Differential Testing Add Method
Disabling Preconditions Remove Method

Change Method Body
Change Method Modifier
Add Field
Remove Field
Change Field Modifier
Change Field Initializer
Change Static Field Initializer
Rename Class
Rename Method
Rename Field
Rename Intertype Declaration
Push Down Method
Pull Up Method
Inline Method
Pull Up Field

Jonge and Visser [20] 2012 Name Binding Preservation Invariant-based Rename
Noguera et al. [21] 2012 Refactoring Safety Tool Annotation-aware Not Mentioned
Thies and Bodden [22] 2012 Refactoring Safety Tool Reflective Calls Rename Field

Rename Method
Rename Type
Rename Package
Move Type
Change Method Signature

Soares et al. [23] 2013 Refactoring Safety Tool Test Suite Generation Pull Up Method
Commit Message Analysis Keywords-based Search Replace Code with Method Call
Manual Analysis Source Code Comparison Move Operation to Listener

Extract Method
Remove Unused Variable
Change Instance Access to Static
Remove Immutable Object Copy
Replace Direct Access with Getter
Replace Instance with isInstance
Add Parameter
Remove Parameter
Replace Field with Method
Decrease Method Visibility
Replace Direct Access with Setter
Inline Temp
Move Method
Consolidate Duplicate Code Fragment
Rename Constant
Rename Local Variable
Replace Generic Cast with classCast
Replace Generic Cast with isInstance
Replace Method with Method Object
Change Statement Order
Swap Access Method
Remove Duplicate Assignment
Consolidate Conditional Expression
Introduce Explaining Variable
Remove Assignment to Parameters
Rename Class
Increase Method Visibility
Rename Method
Rename Field
Replace if with Switch
Replace Equivalent Method Call
Introduce Null Object
Replace Magic Number with Constant

Soares et al. [8], Mongiovi et al. [24] 2009,2014 Refactoring Safety Tool Change Impact Analysis Pull Up Method
Rename Method
Move Method
Push Down Field
Push Down Method
Add Parameter
Encapsulate Field
Rename Field
Rename Type

Najaf et al. [25] 2016 Annealing & Introduce Subtyping UML-B Refactoring Rules Not Mentioned
Horpácsi et al. [26] 2017 Decomposition & Schemes Strategic Term Rewriting Rules Wrap (Change) Expression

Extract to Function
Extract to Variable
Outer Variable
Variable to Function Parameter
Rename Function

Chen et al. [27] 2018 Refactoring Safety Tool Test Suite Generation Extract Method
Pull Up Method
Move Method
Extract Super Class
Move Type to New File
Extract & Move Method
Extract & Pull Up Method

Insa et al. [28] 2018 Refactoring Safety Tool Test Suite Generation Not Mentioned

4

Figure 1: Word Cloud of Paper Titles.

Table 3: Formal Properties of Graph Transformation (Extracted from Mens and Tourwe [29])

Refactoring Graph Transformation
software artifact graph
refactoring graph production
composite refactoring composition of graph productions
refactoring application graph transformation
refactoring precondition application precondition
refactoring postcondition application postcondition

2.1.0.2. Type Constraints. Because this technique is developed only for generalization-
related refactorings, we use Pull Up Attribute and Pull Up Method refactorings
to demonstrate this technique. By referring to the example in Section 1, we no-
tice that certain preconditions need to be checked before performing refactoring,
as follows:

• Methods setSSN , getSSN, and field ssn can be pulled up from class
Salesman into class Employee without affecting program behavior.

• Method yearlySalary cannot be pulled up into class Employee because
class Employee has a method with same signature defined.

• If method toString pulled up into superclass, there is no compilation error
introduced but the program is behaviorally changed. This is because the
call s.toString() dispatches to a different method implementation of the
method toString().

• Method displayYearlySalaryIncrease cannot be pulled up without pulling
up yearlySalaryIncrease() because yearlySalaryIncrease() is not
declared in class Employee.

5

2.1.0.3. Formal Specification and Verification. Consider the formal specifica-
tion of Pull Up Attribute defined in [5]. By applying this refactoring operation
on field ssn (Listing 1) to move the field to the class Employee, the following
preconditions must hold in order for transformation to be carried out success-
fully.

• There is a class named Employee.

• Class Employee has at least one subclass.

• Class Employee does not define the field ssn.

• Subclass of Employee defines the field ssn.

These preconditions are checked by preconditionsPullUpFieldHold oper-
ation and applied by operation applyPullUpField in the formal specification
listed in [5].

2.1.0.4. Model Transformation .

Model Refactoring and Model Refinement An example of this ap-
proach is illustrated briefly in Figure 2. Class Employee (version 1.0) is be-
haviorally refined into a subclass Salesman (version 1.1) using the inheritance
consistency relationship (i.e., the behavior of a subclass should specialize the be-
havior of a superclass). Suppose that the subclass Salesman evolves into a new
version (version 1.2) by either adding new functionality or removing existing
functionality. The evolved version of class Salesman should still be behaviorally
consistent with the class Employee. For the purpose of simplifying the design of
the class, suppose that Salesman (version 1.2) is refactored into a new version
(version 1.3) without affecting the existing behavior. The refactored version of
Salesman should still be behaviorally preserved along with the original class
Employee. To help guarantee behavior preservation of this model, the model
should be behaviorally consistent when performing a refinement to expect that
the evolved model be behaviorally consistent as well.

Model-Driven Refactoring In Figure 3 (a) and (b), we explain this
technique, as follows:

• In this refactoring, we use the following primitive model transformations
from the catalog in [7]: introduce subsignature, remove relation, and in-
troduce relation. To apply the corresponding strategies, we introduce two
subsignatures Savings Account and Checking Account with the Bank
Account supersignature. We then remove the two original relations (has)
and (consist of), and introduce a relation (has) with these two subsig-
natures.

• This refactoring consists of introducing signature, removing relation and
introducing relation primitive transformations. We first restructure the re-
lationship between Bank Account and Transaction by removing (credit

6

to) and (debit from) relations, and adding a relation (posts). Since
two types of transaction can be made (i.e., withdrawal or deposit), we add
a new signature Transaction Kind and introduce a new relation between
Transaction and Transaction Kind.

As stated in [7], applying strategies that are in accordance with laws of
programming helps ensure behavior preservation as these laws provide a formal
basis for program refactoring.

2.1.0.5. Differential Precondition Checking. By way of illustration, Overbey
and Johnson [17] show the differences between the traditional precondition
checking and the differential checking for Pull Up Method refactoring. For the
traditional version, the method needs to be moved from subclass to its super-
class, replacing all occurrences of superclass with this. Using preservation rule
for the differential version, however, this refactoring is composed of two smaller
refactoring operations: (1) Copy Up Method to move a method to its superclass
and replace all occurrences of the superclass with this and (2) Delete Overriding
Duplicate to delete the original method from the subclass using the preserva-
tion rule in [17]. The process of applying the transformation is illustrated in
Figure 4.

2.1.0.6. Decomposition and Schemes. To demonstrate this technique, we use
a recurring example (i.e., video rental) that is taken from Fowler’s book. We
discuss how a complex refactoring transformation is decomposed into simple yet
behavior-preserving refactoring steps. The example requires several primitive
refactorings in order to remove the long statement method :

• To safely split up statement(), the first step is to find a complex piece
of code and use Extract Method refactoring.

• To avoid name conflict, the Rename Field refactoring is used to rename
the variable each to aRental in the extracted code fragment.

• Since the extracted piece of code uses some information from other class,
Move Method refactoring is used to move amountFor() to class Rental.

• To avoid name conflict, the method moved in the previous step is renamed
to getCharge() using Rename Method refactoring.

• A temporary variable thisAmount is used to hold the result of the expres-
sion. To eliminate this temporary variables, Replace Temp with Query
refactoring is used to prevent other parameters from being passed around
when they don’t have to be.

• The frequent rental points part of code is extracted , using Extract
Method refactoring.

• Two temporary variables this Amount and frequentRentalPoints are
replaced with getTotalCharge and getTotalFrequentRenterPoints query
methods respectively by using Replace Temp with Query.

7

Figure 2: Model Refinement & Model Refactoring Formalism

Figure 3: Bank Application Object Model

Figure 4: Differential Precondition Checking Process (Pull Up Method)

8

• Because Switch statement performs various actions depend on the at-
tribute of another object, a State pattern is introduced using three refac-
toring operations. First, Replace Type Code with State refactoring is used
to move type code behavior into the state pattern. Then, move switch
statement to price class using Move Method refactoring. Replace Con-
ditional with Polymorphism refactoring is lastly performed to eliminate
switch statement.

The above sequence of primitive refactorings forms composite refactoring the
safely help to eliminate complex data by proper controlling of the dependen-
cies. The decomposition process of the complex refactorings reflects behavior-
preserving transformation [26].

2.1.0.7. Overly Strong Precondition Identification. .
For an example of such an overly strong condition, reconsider Listing 1

in the running example illustrated in Section 1. Suppose we apply Rename
Method refactoring to rename method getFullName to getName. If we apply
this refactoring using Eclipse, we get the following warning message: Problem
in ’Salesman.java’. The reference to getName will be shadowed by a renamed
declaration. The resulting program is presented in Listing 3. After applying the
transformation, the test2 method outputs John Smith (Listing 3) instead of
John (Listing 1). This transformation exposes a behavioral change after ignoring
a warning message. Similarly, NetBeans applies the transformation and yields
to the program in Listing 3.

By applying this refactoring using JRRT, however, the transformation pre-
serves behavior. JRRT adds a super access to method getName inside test2
to ensure that the resulting program correctly refactors the source program.

We notice that Eclipse rejects the transformation, and NetBeans and JRRT
apply it with the conformance from SafeRefactor tool that it is behaviorally
preserved. Thus, by comparing the results of Eclipse, JRRT, and NetBeans, it
indicates that Eclipse has an overly strong condition because it rejects useful
behavior preserving transformation.

Listing 3: Eclipse’s target program after ignoring the warning message
public class Salesman extends Employee {

public String ssn;
public void setSSN (String setSNN) {

ssn= setSNN ;
}
public String getSSN () {

return ssn;
}

+ public String getName () {
+ return "John Smith ";
+ }

public double getSalary () {
return 2000.99;

}
public double getSomething () {

return super . getSalary ();
}
public String toString () {

9

return " Employee [Salary = " + getSalary () +"]";
}
public double yearlySalary () {

double yearlySalary ;
yearlySalary = (getSalary () * 12);
return yearlySalary ;

}
public double yearlySalaryIncrease () {

double yearlySalaryIncrease ;
yearlySalaryIncrease = (((yearlySalary () * (0.1))
+ yearlySalary ()));
return yearlySalaryIncrease ;

}
public void displayYearlySalaryIncrease () {

System .out. printf (" Yearly Salary Increase is "+
yearlySalaryIncrease ());

}
public double test1 () {

return getSomething ();
}

+ public String test2 () {
+ return getName ();
+ }
}

In the following study that complements this work, Mongiovi et al. [19]
propose a new technique called Disabling Preconditions (DP) to detect overly
strong preconditions. The process starts with using JDolly as test inputs (Step
1). For each generated program, the refactoring engine is used to apply the
transformations. In Step 2, authors collected the messages reported by the
refactoring engine about the rejection of certain refactoring transformations.
The next step is to manually inspect the code fragments and its related pre-
condition for the purpose of disabling the execution of the precondition (i.e.,
DP technique). Step 5 involves reapplying the same transformation with a dis-
abled precondition. After ensuring that the refactoring implementation applies
the transformation and this transformation is behaviorally preserved according
to SafeRefactorImpact, DP technique classifies a precondition as overly strong
precondition.

2.1.0.8. Behavior Preservation Preconditions Examination. Tsantalis and Chatzi-
georgiou [14] propose a methodology to preserve the behavior of the code by
examining a set of preconditions when applying Move Method refactoring. These
preconditions should be satisfied in order to avoid behavioral changes. Tsantalis
and Chatzigeorgiou [14] formally define a set of auxiliary functions that describe
behavior preservation preconditions as follows:

• A class should not inherit a method having a matching signature with the
moved method. This action will lead the inherited method to override
causing behavioral changes of the target class and its derived one. The
moved method needs to be renamed to resolve the issue.

• When moving a method, the method should not override an inherited
method. The original method should be kept as delegate to the moved
method.

10

• When moving a method, the method should have a valid reference to its
target class. The moved method can have a reference via its parameters
or fields in the original class.

• When moving a method, the method should not be synchronized. Moving
the synchronized method might cause concurrency issues to the original
class’s objects.

2.2. Automated Analyses
2.2.0.1. Refactoring Safety Tools.

SafeRefactor As a concrete example of how SafeRefactor detects behav-
ioral change, reconsider refactoring performed in the running example of Sec-
tion 1. Suppose we apply the PullUpMethod refactoring to move getSomething()
from class Salesman to Employee. This method contains a reference to Employee.getSaraly()
using super keyword. As depicted in Figure 5, SafeRefactor prevents this trans-
formation because a behavioral change will introduced (i.e., method test1 yields
2000.90 instead of 1000.33). Figure 5 also shows that 264 out of 326 units tests
fail as the target program does not have the same behavior of the source pro-
gram. Listing 4 presents one of the test cases (i.e., test48()) generated by
SafeRefactor tool.

Listing 4: Test suite of the program presented in Listing 1

public void test48 () throws Throwable {
if (debug)
System .out. printf ("% nRandoopTest0 . test48 ");
Salesman var0 = new Salesman ();
double var1 = var0. test1 ();
double var2 = var0. test1 ();
java.lang. String var3 = var0. test2 ();
java.lang. String var4 = var0. test2 ();
java.lang. String var5 = var0. toString ();
java.lang. String var6 = var0. test2 ();
var0. setSSN (" Employee [MonthlySalary = 2000.99] ");
double var9 = var0. getSomething ();
double var10 = var0. yearlySalaryIncrease ();
java.lang. String var11 = var0. getSSN ();
java.lang. String var12 = var0. getFullName ();
double var13 = var0. yearlySalary ();

// Regression assertion (captures the current
behavior of the code)
assertTrue (var1 == 1000.33 d);

// Regression assertion (captures the current
behavior of the code)
assertTrue (var2 == 1000.33 d);

// Regression assertion (captures the current
behavior of the code)
assertTrue ("’" + var3 + "’ != ’" + "John"+ "’",
var3. equals ("John"));

11

// Regression assertion (captures the current
behavior of the code)
assertTrue ("’" + var4 + "’ != ’" + "John"+ "’",
var4. equals ("John"));

// Regression assertion (captures the current
behavior of the code)
assertTrue ("’" + var5 + "’ != ’" + " Employee
[Salary = 2000.99] "+ "’", var5. equals (" Employee
[Salary = 2000.99] "));

// Regression assertion (captures the current
behavior of the code)
assertTrue ("’" + var6 + "’ != ’" + "John"+ "’",
var6. equals ("John"));

// Regression assertion (captures the current
behavior of the code)
assertTrue (var9 == 1000.33 d);

// Regression assertion (captures the current
behavior of the code)
assertTrue (var10 == 26413.068 d);

// Regression assertion (captures the current
behavior of the code)
assertTrue ("’" + var11 + "’ != ’" + " Employee
[Salary = 2000.99] "+ "’", var11 . equals (" Employee
[Salary = 2000.99] "));

// Regression assertion (captures the current
behavior of the code)
assertTrue ("’" + var12 + "’ != ’" + "John Smith "+ "’",
var12 . equals ("John Smith "));

// Regression assertion (captures the current
behavior of the code)
assertTrue (var13 == 24011.88 d);

}

Figure 5: SafeRefactor Tool Output

12

SafeRefactorImpact The SafeRefactor tool has been extended, and in-
cludes AspectJ support [11], uses change impact analyzer called SAFIRA, and
generates a test suite only for the methods impacted by the transformation [24].
SafeRefactor was renamed SafeRefactorImpact in [24]. This tool works by: (1)
comparing the original and modified programs to identify entities (methods)
impacted by the change, (2) performing a change impact analysis technique for
the impacted methods in both program versions identifying methods that can
be behaviourally changed after the transformation, (3) generating a test suite
for the common methods identified in the previous step, (4) executing the test
suite before and after the transformation, and (5) evaluating the results of the
transformation to determine whether the transformation is behavior preserv-
ing. The main difference between SafeRefactor and SafeRefactorImpact tool is
provided in Table 4.

Mongiovi et al. compare these tools in [24] with respect to several criteria:
program correctness, performance, number of methods considered for test gen-
eration, change coverage, and relevant tests generated. Their findings show that
the extended tool generates better results.

An example of a method that is not impacted by the change was already
presented in Listing 4. All methods , except the methods test1 and getSalary,
do not expose any behavioral change since they are not relevant to test the
aforementioned transformation. However, running irrelevant test cases in a
large program can be time consuming. SafeRefactorImpact allows users to test
only methods impacted by the transformation.

Table 4: Refactoring Safety Tools Comparison.

Tool SafeRefactor SafeRefactorImpact
Technology OOP OOP & AOP
Methods Detected common methods methods impacted by transformation
Test Cases Generated relevant & non-relevant test cases relevant test cases

Refactoring Browser In order to preserve the behavior of the program,
each refactoring is associated with a reused set of preconditions that must be
checked by the compilation framework in VisualWorks. For instance, to success-
fully implement Add Method refactoring, the method name should not conflict
with a method defined in the class.

2.2.0.2. Commit Message Analysis. One of the approaches to analyze refactor-
ing activity on software repositories is by analyzing commit messages. Ratzinger
et al. propose this simple and fast approach to detect refactoring activity be-
tween a pair of program versions to determine whether a transformation is
behavior preserving. They identified refactorings based on a set of keywords ex-
isting in the commit message. In particular, they focus on the following terms
in their search approach: refactor, restruct, clean, not used, unused, reformat,
import, remove, replace, split, reorg, rename, and move.

13

Few commit messages containing some of these terms (i.e., refactor, restruct,
clean, not used, unused, reformat, import, remove, replace, split, reorg, rename,
and move) are extracted from the Hadoop1 project, as illustrated in the following
comments:

“1. HADOOP-9805. Refactor RawLocalFileSystem rename for improved
testability. Contributed by Jean-Pierre Matsumoto.”
“2. HDFS-7743. Code cleanup of BlockInfo and rename BlockInfo to Block-
InfoContiguous. Contributed by Jing Zhao.”

References

[1] D. Roberts, J. Brant, R. Johnson, A refactoring tool for smalltalk, Theory and Practice
of Object systems 3 (4) (1997) 253–263.

[2] T. Mens, N. Van Eetvelde, D. Janssens, S. Demeyer, Formalising refactorings with graph
transformations, 2003, p. 69.

[3] F. Tip, A. Kiezun, D. Bäumer, Refactoring for generalization using type constraints,
in: Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-oriented
Programing, Systems, Languages, and Applications, OOPSLA ’03, ACM, New York,
NY, USA, 2003, pp. 13–26. doi:10.1145/949305.949308.
URL http://doi.acm.org/10.1145/949305.949308

[4] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, B. De Sutter, Refactor-
ing using type constraints, ACM Transactions on Programming Languages and Systems
(TOPLAS) 33 (3) (2011) 1–47.

[5] A. Garrido, J. Meseguer, Formal specification and verification of java refactorings, in:
2006 Sixth IEEE International Workshop on Source Code Analysis and Manipulation,
2006, pp. 165–174. doi:10.1109/SCAM.2006.16.

[6] R. Van Der Straeten, V. Jonckers, T. Mens, A formal approach to model refactoring and
model refinement, Software & Systems Modeling 6 (2) (2007) 139–162. doi:10.1007/
s10270-006-0025-9.
URL https://doi.org/10.1007/s10270-006-0025-9

[7] T. Massoni, R. Gheyi, P. Borba, Formal model-driven program refactoring, in: Proceed-
ings of the Theory and Practice of Software, 11th International Conference on Fundamen-
tal Approaches to Software Engineering, FASE’08/ETAPS’08, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 362–376.
URL http://dl.acm.org/citation.cfm?id=1792838.1792873

[8] G. Soares, D. Cavalcanti, R. Gheyi, T. Massoni, D. Serey, M. Cornélio, Saferefactor-tool
for checking refactoring safety.

[9] G. Soares, R. Gheyi, T. Massoni, M. Cornélio, D. Cavalcanti, Generating unit tests for
checking refactoring safety, in: Brazilian Symposium on Programming Languages, 2009,
pp. 159–172.

[10] G. Soares, R. Gheyi, D. Serey, T. Massoni, Making program refactoring safer, IEEE
Software 27 (4) (2010) 52–57. doi:10.1109/MS.2010.63.

1https://github.com/apache/hadoop

14

http://doi.acm.org/10.1145/949305.949308
http://dx.doi.org/10.1145/949305.949308
http://doi.acm.org/10.1145/949305.949308
http://dx.doi.org/10.1109/SCAM.2006.16
https://doi.org/10.1007/s10270-006-0025-9
https://doi.org/10.1007/s10270-006-0025-9
http://dx.doi.org/10.1007/s10270-006-0025-9
http://dx.doi.org/10.1007/s10270-006-0025-9
https://doi.org/10.1007/s10270-006-0025-9
http://dl.acm.org/citation.cfm?id=1792838.1792873
http://dl.acm.org/citation.cfm?id=1792838.1792873
http://dx.doi.org/10.1109/MS.2010.63

[11] G. Soares, D. Cavalcanti, R. Gheyi, Making aspect-oriented refactoring safer, in: Pro-
ceedings of the 15th Brazilian Symposium on Programming Languages, SBLP, Vol. 11,
2011, pp. 91–105.

[12] N. Ubayashi, J. Piao, S. Shinotsuka, T. Tamai, Contract-based verification for aspect-
oriented refactoring, in: 2008 1st International Conference on Software Testing, Verifica-
tion, and Validation, IEEE, 2008, pp. 180–189.

[13] M. Schäfer, T. Ekman, O. De Moor, Sound and extensible renaming for java, in: Proceed-
ings of the 23rd ACM SIGPLAN conference on Object-oriented programming systems
languages and applications, 2008, pp. 277–294.

[14] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring opportunities,
IEEE Transactions on Software Engineering 35 (3) (2009) 347–367. doi:10.1109/TSE.
2009.1.

[15] M. Schäfer, O. De Moor, Specifying and implementing refactorings, in: Proceedings of
the ACM international conference on Object oriented programming systems languages
and applications, 2010, pp. 286–301.

[16] N. Tsantalis, A. Chatzigeorgiou, Identification of refactoring opportunities introducing
polymorphism, Journal of Systems and Software 83 (3) (2010) 391–404.

[17] J. L. Overbey, R. E. Johnson, Differential precondition checking: A lightweight, reusable
analysis for refactoring tools, in: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), 2011, pp. 303–312. doi:10.1109/ASE.
2011.6100067.

[18] G. Soares, M. Mongiovi, R. Gheyi, Identifying overly strong conditions in refactoring
implementations, in: 2011 27th IEEE International Conference on Software Maintenance
(ICSM), 2011, pp. 173–182. doi:10.1109/ICSM.2011.6080784.

[19] M. Mongiovi, R. Gheyi, G. Soares, M. Ribeiro, P. Borba, L. Teixeira, Detecting overly
strong preconditions in refactoring engines, IEEE Transactions on Software Engineering
44 (5) (2018) 429–452. doi:10.1109/TSE.2017.2693982.

[20] M. De Jonge, E. Visser, A language generic solution for name binding preservation in
refactorings, in: Proceedings of the Twelfth Workshop on Language Descriptions, Tools,
and Applications, 2012, pp. 1–8.

[21] C. Noguera, A. Kellens, C. De Roover, V. Jonckers, Refactoring in the presence of anno-
tations, in: 2012 28th IEEE International Conference on Software Maintenance (ICSM),
IEEE, 2012, pp. 337–346.

[22] A. Thies, E. Bodden, Refaflex: Safer refactorings for reflective java programs, in: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis, 2012,
pp. 1–11.

[23] G. Soares, R. Gheyi, E. Murphy-Hill, B. Johnson, Comparing approaches to analyze
refactoring activity on software repositories, Journal of Systems and Software 86 (4)
(2013) 1006 – 1022, sI : Software Engineering in Brazil: Retrospective and Prospective
Views. doi:https://doi.org/10.1016/j.jss.2012.10.040.
URL http://www.sciencedirect.com/science/article/pii/S016412121200297X

[24] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, P. Borba, Making refactoring safer through
impact analysis, Sci. Comput. Program. 93 (2014) 39–64. doi:10.1016/j.scico.2013.
11.001.
URL http://dx.doi.org/10.1016/j.scico.2013.11.001

[25] M. Najafi, H. Haghighi, T. Z. Nasab, A set of refactoring rules for uml-b specifications,
Computing and Informatics 35 (2) (2016) 411–440.

15

http://dx.doi.org/10.1109/TSE.2009.1
http://dx.doi.org/10.1109/TSE.2009.1
http://dx.doi.org/10.1109/ASE.2011.6100067
http://dx.doi.org/10.1109/ASE.2011.6100067
http://dx.doi.org/10.1109/ICSM.2011.6080784
http://dx.doi.org/10.1109/TSE.2017.2693982
http://www.sciencedirect.com/science/article/pii/S016412121200297X
http://www.sciencedirect.com/science/article/pii/S016412121200297X
http://dx.doi.org/https://doi.org/10.1016/j.jss.2012.10.040
http://www.sciencedirect.com/science/article/pii/S016412121200297X
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001

[26] D. Horpácsi, J. Köszegi, Z. Horváth, Trustworthy refactoring via decomposition and
schemes: A complex case study, in: VPT@ETAPS, 2017.

[27] Z. Chen, H.-F. Guo, M. Song, Improving regression test efficiency with an awareness of
refactoring changes, Information and Software Technology 103 (2018) 174–187.

[28] D. Insa, S. Pérez, J. Silva, S. Tamarit, Behaviour preservation across code versions in
erlang, Scientific Programming 2018.

[29] T. Mens, T. Tourwe, A survey of software refactoring, IEEE Transactions on Software
Engineering 30 (2) (2004) 126–139. doi:10.1109/TSE.2004.1265817.

16

http://dx.doi.org/10.1109/TSE.2004.1265817

	Running Example
	Examples of the Behavior Preservation Approaches
	Refactoring Formalisms and Techniques
	Graph Transformation
	Type Constraints
	Formal Specification and Verification
	Model Transformation
	Differential Precondition Checking
	Decomposition and Schemes
	Overly Strong Precondition Identification
	Behavior Preservation Preconditions Examination

	Automated Analyses
	Refactoring Safety Tools
	Commit Message Analysis

