
Noname manuscript No.
(will be inserted by the editor)

Refactoring for Reuse: An Empirical Study

Eman Abdullah AlOmar ID · Tianjia Wang · Vaibhavi Raut · Mohamed Wiem
Mkaouer ID · Christian Newman ID · Ali Ouni ID

Received: date / Accepted: date

Abstract Refactoring is the de-facto practice to optimize
software health. While several studies propose refac-
toring strategies to optimize software design through
applying design patterns and removing design defects,
little is known about how developers actually refactor
their code to improve its reuse. Therefore, we extract,
from 1,828 open source projects, a set of refactorings
that were intended to improve the software reusability.
We analyze the impact of reusability refactorings on the
state-of-the-art reusability metrics, and we compare the
distribution of reusability refactoring types, with the
distribution of the remaining mainstream refactorings.
Overall, we found that the distribution of refactoring
types, applied in the context of reusability, is different
from the distribution of refactoring types inmainstream
development. In the refactorings performed to improve
reusability, source files are subject to more design level
types of refactorings. Reusability refactorings signifi-
cantly impact, high-level code elements, such as pack-
ages, classes, and methods, while typical refactorings,
impact all code elements, including identifiers, and pa-
rameters. These findings provide practical insights into
the current practice of refactoring in the context of code
reuse involving the act of refactoring.

Keywords refactoring, reusability, software metrics,
quality

Eman Abdullah AlOmar · Tianjia Wang · Vaibhavi Raut · Mo-
hamed Wiem Mkaouer · Christian Newman
Rochester Institute of Technology
E-mail: {eaa6167,twang,vraut,mwmvse,cdnvse}@rit.edu

Ali Ouni
ETS Montreal, University of Quebec
E-mail: ali.ouni@etsmtl.ca

1 Introduction

Refactoring is defined as the process of changing
software system in such way that changes improve soft-
ware quality anddo not alter the software behaviour [53,
32,12]. Refactoring is one of the commonly-used tech-
niques to improve software quality [68,32]. There are
different refactoring operations that could be used to
improve software quality such as a change in parameter
types, move attributes/methods, rename variables/pa-
rameters/attributes/methods/classes, extract methods,
extract classes, etc [32].

Refactoring plays an important role in software en-
gineering, as its purpose is to improve software quality.
Without refactoring, software quality would continue
to deteriorate and make development more difficult. Re-
searchers conducted many studies on refactoring in dif-
ferent areas, such as finding the approach to effectively
refactor code and determining the impact of refactoring
on software quality. One particular aspect of refactoring
is increasing the reusability of software components,
which provides developers a more efficient way to uti-
lize existing code to create new functionality. Creating
reusable software components facilitates development
and maintenance since less work is needed to accom-
plish additional functionality.

While it is usually true that refactoring improves
software quality, it is not known how reusability refac-
toring impacts metrics. Moser et al. [50] has found that
the appropriate refactoring can make the necessary de-
sign level changes to improve the software reusability,
however, there is no practical evidence on how devel-
opers refactor code to improve reusability in practice.

The purpose of this paper is to investigate howdevel-
opers use refactoring when they state they are improv-
ing code reusability. Therefore, we have mined commits

https://orcid.org/0000-0003-1800-9268
https://orcid.org/0000-0001-6010-7561
https://orcid.org/0000-0002-8838-4074
https://orcid.org/0000-0003-4708-0362

2 AlOmar et al.

from 1,828 well-engineered project, were we have iden-
tified 1,957 reusability commits. We refer to a commit
as a reusability commit where its developer explicitly
mentions, in the commit message, that a refactoring is
performed to improve reusability. Then we extract all
refactorings executed in these reusability commits, and
we label them as reusability refactorings. To better under-
stand how developers perceive reusability and apply it
in real-world scenarios, we examine how these refactor-
ings manifest in the code by examining their impact on
code quality. Furthermore, to check if there are some
refactoring patterns that are specific to reusability, we
report the distribution of reusability refactorings com-
pared to other refactorings and the distribution of the
different types of refactored code elements in reusabil-
ity refactorings. This paper extends a quantitatively and
qualitatively our previous study [17]. This papers ana-
lyzes the impact of reusability refactorings at a wider
set of structural metrics, allowing a better profiling of
how the intent of improving design, impacts, either pos-
itively or negatively, various design level metrics. From
Qualitative point of view, we manually investigate to
categorize the intents behind refactoring reusable code.
We particularly investigate what triggers developer to
refactor the code for the purpose of code reuse.To per-
form this analysis, we formulate the following research
questions:

RQ1. Do developers refactor code differently for the pur-
pose of improving reusability?

To answer this research question, we execute Refac-
toring Miner [73] to extract the type of refactorings that
are chosen by developers to improve reusability. We
also investigate if there are any refactoring patterns that
are specific to reusability, by comparing the distribution
of reusability-related refactorings, with the distribution
of refactorings for other mainstream development tasks.
Then, we identify any significant differences between
the distribution values in the two populations.

RQ2. What is the impact of reusability refactorings on
structural metrics?

To answer this research question, we consider the
state-of-the-art reusability structural metrics, extracted
from previous studies [50,18]. We calculate these met-
rics on files before and after they were refactored for
improving reusability. Then we analyze the impact of
refactorings on the variation of these metrics, to see if
they were capturing the improvement.

RQ3. What triggers developers to refactor the code for
the purpose of code reuse?

To answer this research question, we perform case
studies that demonstrate GitHub developers’ intentions
when refactoring source code to improve code reusabil-
ity.

The results of our study indicate that when devel-
opers make reusability changes, they seem to signifi-
cantly impact metrics related to methods and attributes,
but not parameters or interfaces. Additionally, develop-
ers perform reusability changes much less than regular
refactoring changes. Aid from our empirical analysis,
we provide the software reuse community with a repli-
cation package, containing the dataset we crawled, the
files containing all the metric values, for the purpose of
replication and extension1.

The remainder of this paper is organized as follows:
Section 2 includes some existing studies related to our
work. Section 3 presents the design of our empirical
study, Section 4 shows the results of our experiments,
Section 6 describes the threats the validity to our study
and any mitigation we took to minimize those threats,
and Section 7 summarizes the contributions and results
of our study.

2 Related Work

It is widely acknowledged in the literature of soft-
ware refactoring that it has the ultimate goal to improve
software quality and fix design and implementation
bad practices [32]. As shown in Table 1, there is much
research effort have focused on studying and exploring
the impact of refactoring on software quality [49,75,18,
67,22,25,46,24,36,15,35]. The vast majority of studies
have focused on measuring the internal and external
quality attributes to determine the overall quality of a
software system being refactored. In this section, we
review and discuss the relevant literature on software
quality in general and reusability in particular.

2.1 Studies on Software Reusability

Software reusability has been a topic of interest since
the 1970s, because of that, a large amount of literature
that discusses it is available. This section, although not
accounting for all availablework, does its best in present-
ing multiple papers from the different ways reusability
is discussed. Previous work discussed general aspects
of reusability, identifying challenges, topics, issues and
principles [10,20,38,43,47,77,78].

Ahmaro et al. [10] conducted a systematic litera-
ture review to identify the definition, approaches, bene-
fits, reusability levels, factors, and adoption of software
reusability. The authors found that the concept of soft-
ware reusability consisted of 11 approaches, namely,

1 https://smilevo.github.io/self-affirmed-refactoring/

https://smilevo.github.io/self-affirmed-refactoring/

Refactoring for Reuse: An Empirical Study 3

Table 1: A summary of the literature on the impact of refactoring activities on quality.
Study Year Approach Software Metric
Sahraoui et al. [64] 2000 Analyzing code histories CLD / NOC / NMO / NMI

NMA / SIX / CBO / DAC
IH-ICP / OCAIC / DMMEC / OMMEC

Stroulia & Kapoor [69] 2001 Performing a case study LOC / LCOM / CC
Tahvildari et al. [72] 2003 Analyzing code histories LOC / CC / CMT / Halstead’s efforts
Leitch & Stroulia [40] 2003 Analyzing code histories SLOC / No. of Procedure
Bois & Mens [28] 2003 Analyzing code histories NOM / CC / NOC / CBO

RFC / LCOM
Tahvildari & Kontogiannis [71] 2004 Analyzing code histories LCOM / WMC / RFC / NOM

CDE / DAC / TCC
Moser et al. [50] 2006 Analyzing code histories CK / MCC / LOC
Wilking et al. [75] 2007 Analyzing code histories CC / LOC
Stroggylos & Spinells [68] 2007 Mining commit log CK / Ca / NPM
Moser et al. [49] 2008 Analyzing code histories CK / LOC / Effort (hour)
Alshayeb [18] 2009 Analyzing code histories CK / LOC / FANOUT
Hegedus et al. [36] 2010 Analyzing code histories CK
Shatnawi & Li [67] 2011 Analyzing code histories CK / QMOOD
Bavota et al. [23] 2013 Analyzing code histories ICP / IC-CD / CCBC

Surveying developers
Szoke et al. [70] 2014 Mining commit log CC / U / NOA / NII / NAni

Surveying developers LOC / NUMPAR / NMni / NA
Bavota et al. [22] 2015 Mining commit log CK / LOC / NOA / NOO

Analyzing code histories C3 / CCBC
Mkaouer et al. [46] 2016 Many-objective SBSE QMOOD
Cedrim at al. [24] 2016 Mining commit log LOC / CBO / NOM / CC

Analyzing code histories FANOUT / FANIN
Chavez et al. [25] 2017 Mining commit log CBO / WMC / DIT / NOC

Analyzing code histories LOC / LCOM2 / LCOM3 / WOC
TCC / FANIN / FANOUT / CINT
CDISP / CC / Evg / NPATH
MaxNest / IFANIN / OR / CLOC
STMTC / CDL / NIV / NIM / NOPA

Pantiuchina et al. [55] 2018 Mining commit log LCOM / CBO / WMC / RFC
Analyzing code histories C3 / B&W / Sread

AlOmar et al. [15] 2019 Mining commit log CK / FANIN / FANOUT / CC / NIV / NIM
Analyzing code histories Evg / NPath / MaxNest / IFANIN

LOC / CLOC / CDL / STMTC
AlOmar et al. [17] 2020 Mining commit log CK / CC / LOC

Analyzing code histories
Hamdi et al. [35] 2021 Mining commit log LCOM / CBO / WMC / RFC

Analyzing code histories NOSI / TCC / LCC / LOC
VQYT / DIT

design patterns, component-based development, appli-
cation frameworks, legacy system wrapping, service-
oriented systems, application product lines, COTS inte-
gration, program libraries, program generators, aspect-
oriented software development and configurable ver-
tical applications. A study on the relationship of com-
plexity and reuse design principles is reported by An-
guswamy and Frakes [20]. Their findings show that
the higher the complexity the lower the ease of reuse.
Lubars et al. [43] contrasted code reusability in the large
versus code reusability in small with regards to sev-
eral aspects, including, size, complexity, application,
and problems associated with locating and reusing the
code. The author highlighted that code reusability in
the small has had limited impact because of its strongly

self-centered orientation, whereas code reusability in
the large has had limited impact because of its high de-
gree of difficulty in finding the reusable components.
In a similar context, Mockus [47] performed large-scale
code reuse study in open source software and found
that more than 50% of the files were used in more than
one project. Yin and Lee [77] conducted a survey to
examine the characteristics of software reusability from
the points of view of software engineering as well as
knowledge engineering. Younoussi and Roudies [78]
presented a systematic literature review on software
reusability. They pointed out that few studies examined
barriers of reusability, and organizations need to adapt
software reusability approaches.

4 AlOmar et al.

Reusability and code reuse are also discussed in re-
lation to specific topics [34,44,57,65,56,42,19,9,11,30].
Lotter et al. [42] explored code reuse between Stack
Overflow and Java open-source systems in order to un-
derstand how the practice of reusing code could af-
fect future software maintenance and the correct use
of license. Their findings show that there is up to 3.3
% code reuse within Stack Overflow, while 1.0 % of
Stack Overflow code is reused in Java projects. Patrick
[56] investigated reusability metrics with Q&A forum
data. The author proposed an approach (LANLAN),
using word embeddings and machine learning, to clas-
sify Q&A forum posts into support requests and prob-
lem reports, as well as reveal information in relation
to software reusability and explore potential reusabil-
ity metrics. In another context, Abdalkareem et al. [9]
performed an exploratory study on 22 Android apps to
explore how much, why, when, and who reuses code.
They found that 1.3 % of the Apps were constructed
from Stack Overflow posts, and discovered that mid-
aged and older apps reuse Stack Overflow code later
in their lifetime. An et al. [19] also explored Android
apps and found that 15.5 % of the apps contained exact
code clones, and 60 out of 62 apps, had potential li-
cense violations. Recently, AlOmar et al. [11] presented
insights regarding how developers discuss software
reuse by analyzing Stack Overflow. These findings can
be used to guide future research and to assess the rele-
vance of software reuse nowadays. Their findings show
that software reuse is a decreasing trend in Stack Over-
flow which might indicate that developers have widely
adopted this practice and thus few questions regard-
ing it emerge as it is well grasped by the community.
Further, Feitosa et al. [30] studied the relation between
software reuse at the class level and technical debt. The
authors found that reused classes tend to concentrate
more principally, and reused code usually has less tech-
nical debt interest.

2.2 Studies on Software Quality

Research in refactoring software has covered a va-
riety of aspects, including tools and methods to facil-
itate refactoring and accurately assess the impact of
refactoring on software quality. Pantiuchina et al. [55]
talked about determining if there was a difference in
how developers perceive refactorings will be helpful,
and how the metrics say the refactorings were. That
study determined that even if a developer reports that
there was a refactoring done it might not be reflected in
the metrics. This study focuses on comparing specific
refactorings relating to certain metrics, specifically “co-
hesion”, “coupling”, “readability”, and “complexity”,

to metrics that measure those attributes, while we fo-
cused on usingmetrics to determine if there was a quan-
tifiable difference, and if so, what that difference was,
during self-proclaimed reusability refactorings. Even
then, something to take away from this study is that
measuring refactoring code changes focusing on qual-
ity of life, rather than strictly functional, can have many
moving parts not measured by metrics. Metrics do not
tell the whole story, and while it is good to see what
metrics are affected when developers improve reusabil-
ity, it could also be helpful to include information and
narratives from actual developers alongside the pure
metrics.

Fakhoury et al. [29] have shown that the existing
readability models are not able to capture the readabil-
ity improvement with minor changes in the code, and
some metrics which can effectively measure the read-
ability improvement are currently not used by readabil-
ity models. The authors also studied the distribution of
different types of changes in readability improvements,
which is similar to our research question, which exam-
ines the distribution of the different types of refactored
code elements in reusability refactorings.

Prior works [13,58,14] have explored how devel-
opers document their refactoring activities in commit
messages; this activity is called Self-Admitted Refactor-
ing or Self-Affirmed Refactoring (SAR). In particular,
SAR indicates developers’ explicit documentation of
refactoring operations intentionally introduced during
a code change.

AlOmar et al. [15] showed that there is a misper-
ception between the state-of-the-art structural metrics
widely used as indicators for refactoring and what de-
velopers consider to be an improvement in their source
code. The research aims to identify (among software
quality models) the metrics that align with the vision of
developers on the quality attribute they explicitly state
they want to improve. Their approach entailed mining
322,479 commits from 3,795 open source projects, from
which they identified about 1,245 commits based on
commit messages that explicitly informed the refactor-
ing towards improving quality attributes. Thereafter,
they processed the identified commits by measuring
structural metrics before and after the changes. The vari-
ations in values were then compared to distinguish met-
rics that are significantly impacted by the refactoring,
towards better reflecting the intention of developers to
improve the corresponding quality attribute. Our study
also utilized software quality metrics to evaluate the
impact of refactoring on reusability.

Research particularly in reusability refactoring by
Moser et al. [50] showed that refactoring increases the
quality and reusability of classes in an industrial, agile

Refactoring for Reuse: An Empirical Study 5

Table 2: Summary of related studies on developer perception and quality.
Study Year Focus Dataset Size Quality Attribute Software Metric

Moser et al. [50] 2006 Reusability measurement over time. 30 Java classes Reusability
LCOM / RFC / CC
CBO / WMC /LOC
DIT /NOC

Pantiuchina et al. [55] 2018 Developer’s perception & quality 1,282 commits
Cohesion / Coupling
Complexity / Readability

LOCM / C3 / CBO
RFC / WMC / B&W
Sread

Fakhoury et al. [29] 2019 Developer’s perception & quality 548 commits Readability B&W / Sread / Dorn

AlOmar et al. [15] 2019 Developer’s perception & quality 1,245 commits

Coupling / Cohesion
Complexity / Inheritance
Polymorphism / Encapsulation
Abstraction / Size

LCOM / CBO / FANIN
FANOUT / RFC /CC
WMC / Evg / NPATH
MaxNest / DIT / NOC
IFANIN / LOC / CLOC
STMTC / CDL / NIV
NIM

AlOmar et al. [17] 2020 Developer’s perception & quality 1,967 commits Reusability
LCOM / CBO / RFC
CC / WMC / LOC
DIT / NOC

environment. Similar to our paper, their study exam-
ines the impact of refactoring on quality metrics related
to reusability on the method and class levels, such as
Weighted Method per Class (WMC) and Coupling Be-
tween Object (CBO), respectively. The results of their
experiment revealed that refactoring significantly im-
proved the metrics Response for Class (RFC) and Cou-
pling Between Object classes (CBO) related to reusabil-
ity. However, the limitations of their study involved
a small project consisting of 30 Java classes and 1,770
Lines of Code (LOC) developed by two pairs of pro-
grammers over the course of 8 weeks. In addition, the
authors considered how general refactoring operations
impact metrics related to reusability, rather than specifi-
cally reusability refactorings. In our study, we examined
1,828 projects and 154,820 commits that modified Java
files. We also considered how reusability changes af-
fect software quality metrics and how what kinds of
refactoring operations were performed during reusabil-
ity changes. Table 2 shows the summary of each study
related to our work.

Our work highlights on the aspect of reusability
refactorings, and is different from the above-mentioned
studies as our main purpose is to explore if there is an
alignment between quality metrics and reusability qual-
ity improvement that are documented by developers
in the commit messages. To the best of our knowledge,
no previous study has empirically investigated, using
a curated set of commits, and the representativeness
of structural design metrics for reusability quality at-
tribute.

3 Experimental Design

According to the guidelines reported by Runeson
and Höst [63], we design an empirical study that is sup-
ported by explanatory case studies [61]. Our research

method consists of three steps as depicted in Figure 1.
We detail each activity of our methodology in the sub-
sequent subsections. The dataset utilized in this study
is available for extension and replication purpose 2.

3.1 Selection of Quality Attributes and Structural
Metrics

We started by conducting a literature review on ex-
isting and well-known software quality metrics and
their corresponding possible measurements [26,41,45].
Next, we extracted metrics that are used to assess sev-
eral object-oriented design aspects in general, and soft-
ware reusability in particular. For example, the RFC
(Response for Class) metric is typically used to mea-
sure visibility of a given class in the project, the more a
class is responsive, the more it can be accessed and its
functionality can be reused by other objects in the sys-
tem. More generally, we extract, from literature review,
all the associations between metrics (e.g., CK suite [26],
McCabe [45]) with reusability quality attribute.

The process left us with 8 object-oriented metrics as
shown in Table 3. The list of metrics is (1) well-known
and defined in the literature, and (2) can assess on dif-
ferent code-level elements, i.e., method, class, package,
and (3) can be calculated by the tool we considered. All
metrics values are automatically computed using the
tool Understand3, a software quality assurance frame-
work.

3.2 Refactoring Detection

The projects in our study consist of 1,828 open-source
Java projects, which were curated projects hosted on

2 https://smilevo.github.io/self-affirmed-refactoring/
3 https://scitools.com/

https://smilevo.github.io/self-affirmed-refactoring/
https://scitools.com/

6 AlOmar et al.

 Phase 1 & 2: Data Collection & Refactoring Detection

Commit log,
Detected

refactoringsEngineered open- source
Java projects selection

(1,828)
Clone repositories Detect refactorings

 Phase 3: Quality Attributes & Software Metrics Selection

Extract commit messages
(154,820)

Select quality attributes
(5)

Use keyword-based
approach

(1,967)

Measure quality attributes Compare metric values

 Phase 4: Manual Analysis

Case studies analysisSelect commit messages

Analyze code changes Analyze refactorings

Fig. 1: Empirical study design overview.

GitHub. These projects were selected from a dataset
made available by Munaiah et al. [51], while verifying
that these are Java-based projects since this is the only
language the Refactoring Miner [73] supports. These
projects utilize software engineering practices such as
documentation and testing.

We utilize Refactoring Miner [73] for mining refac-
torings from each project in our dataset. Refactoring
Miner is designed to analyze code changes (i.e., com-
mits) in Git repositories to detect applied refactorings.
Our choice of the mining tool is driven by its accuracy
(precision of 98% and a recall of 87%) and is suitable
for a study that requires a high degree of automation
since it can be used through its external API.

In this phase, we collect a total of 862,888 refactoring
operations from 154,820 commits. An overview of the
studied benchmark is provided in Table 4.

3.3 Reusability Commits Extraction

After extracting all refactoring commit messages de-
tected by RefactoringMiner, our next step consists of an-
alyzing each of the commit messages as we want to only

keep commits where refactoring is documented, i.e.,
self-affirmed refactoring (SAR) [13,16,14]. As for the
commit message selection, we initially use a keyword-
based approach to find those commits that contain the
keywords reus*4 and reusability. We have chosen these
two keywords because of their popularity in the de-
velopment community as being used by developers to
describe software reusability [66]. We then kept com-
mits whose messages contained the two keywords. We
performed a manual analysis of all the commits, and we
ended up removing any duplicates and false positives.
This was done by the first two authors. This process
resulted in selecting 1,967 commits, containing 3,065
refactorings, as our dataset for this study. Each dataset
instance is a commit, alongwith its corresponding refac-
torings.

As an illustrative example, Figure 2 details a com-
mit whose message states the relocation of the method
classFor(asmType) to an internal class utility class for the
purpose of applying the single responsibility principle

4 Regular expression was used to capture all expansions of reus
such as reuses, reusing, reuse, etc.

Refactoring for Reuse: An Empirical Study 7

Table 3: Reusability and its corresponding structural metrics used in this study.
Quality Attribute Study Software Metric
Cohesion [18,50] Lack of Cohesion of Methods (LCOM)
Complexity [50] Response for Class (RFC)

[50] Cyclomatic Complexity (CC)
[25,15] Paths (NPATH)
[25,15] Nesting (MaxNest)

Coupling [18,50] Coupling Between Objects (CBO)
[25,15] Fan-in (FANIN)
[25,15] Fan-out (FANOUT)

Design Size [18,50] Weighted Method per Class (WMC)
[18,50] Line of Code (LOC)
[25,15] Lines with Comments (CLOC)
[25,15] Statements (STMTC)
[25,15] Classes (CDL)
[25,15] Instance Variables (NIV)
[25,15] Instance Methods (NIM)

Inheritance [18,50] Depth of Inheritance Tree (DIT)
[18,50] Number of Children (NOC)
[25,15] Base Classes (IFANIN)

Table 4: Studied dataset statistics.
Item Count
Studied projects 1,828
Commits with refactorings 154,820
Commits with reus*/reusability Keywords 1,967
Reusability refactoring operations 3,065

Fig. 2: A sample instance of our dataset.

and code reusability5. After running Refactoring Miner,
we detected the existence of aMove method refactoring
from the class ExplicitMappingVisitor to the class Types.
The detected refactoring matches the description of the
commit message, and gives more insights about the
old placement of the method, which was absent in the
textual description. As we explain in the following sub-
section, we need to locate all the code elements involved
in the refactoring (source class, target class, etc.) for the
purpose of evaluating the quality of the relocation in
terms of impact of structural metrics, such as coupling
and cohesion.

3.4 Metrics Calculation

To generate the metric values for reusability com-
mits, we ran code evaluation tool, specifically using

5 https://github.com/modelmapper/modelmapper/commit/
6796071fc6ad98150b6faf654c8200164f977aa4

Understand6. The metrics we used to evaluate the code
quality are summarized in Table 3.

We then used SQL queries to find reusability com-
mits in the dataset and their associated project links
to clone using Git and exported the results from our
dataset to a combined Comma-Separated Value (CSV)
file. Using a shell script, we cloned the projects, checked
out the versions for each commit, and ran the Git diff
command to see which files changed in each commit.
The goal of using Git diff is to track the changed files in
each commit and categorize them into the ’before/after’
directory for further analysis. For each file being modi-
fied in a commit, the Git diff shows the file paths and a
status related to the change as follows:

– ’M’ (modification of the contents or mode of a file)
– ’R’ (renaming of a file)
– ’D’ (deletion of a file)
– ’A’ (addition of a file)

Based on the four different status, we performed
different actions on the file.

– For ‘M’, we keep the original file before the change
in ‘before’ directory, and the modified file after the
change in ‘after’ directory.

– For ‘R’, we keep the original file before the change,
and the renamed file after the change in ‘after’ di-
rectory.

– For ‘D’, we keep the file in the ‘before’ directory.
– For ‘A’, we keep the file in the ‘after’ directory.

In another words, if files were deleted in a commit,
we included the metric values for those files before the
commit but not after it. If files were added in a com-
mit, we included the metric values for those files after

6 https://scitools.com/features/

8 AlOmar et al.

the commit but not before it. If files were renamed or
moved in a commit, then we included the metric values
for those files both before and after the commit. Our
shell script then ran the Understand tool to generate
metrics for the changed files for the versions before and
after each reusability commit, resulting in two files con-
taining metric values for each commit: (1) one file for
the files changed before the commit and (2) another file
for the files changed after the commit.

Since each metric value before and after the com-
mit are dependent to each other, we decided to use the
Wilcoxon Signed-rank Test [74] to determine whether
or not there were statistically significant differences in
the metric values for all changed files before and after
the reusability commits. We formulated the following
hypotheses:

H0:There was no improvement in the metrics we analyzed
between before and after the reusability refactoring.

H1: There was an improvement shown as an increase.
To achieve that, we created Python scripts to order

and sort all the values from the above results from Un-
derstand to ensure that the rows in both before and
after files are corresponding to each other. Next, we
combined the data in the CSV files before and after the
commits together into another two CSV files each have a
total of 185,244metric values: one CSV file for all code el-
ements in changed files before the reusability commits,
and another CSV file for all code elements in changes
files after the commits. The Wilcoxon Signed-rank Test
allowed us to determine if any metrics were statistically
significantly changed when developers performed self-
proclaimed reusability refactorings.

3.5 Manual Analysis

To get a more qualitative sense of the context of
code reuse involving the act of refactoring, we create
case studies that demonstrate GitHub developers’ inten-
tions when refactoring source code for the purpose of
code reuse. Case study is one of the empirical methods
used for studying phenomena in a real-life context [76].
In our study, we performed a combination of manual
analysis and quantitative analysis. For each case study,
we checkout the corresponding commit to obtain the
source code, then two authors manually analyze the
code changes. We provide the commit message and its
corresponding refactoring operations detected by the
tool RefactoringMiner. We elaborate in detail these case
studies in Section 4.3, where we report on our results.

4 Results

This section reports and discusses our experimental
results and aims to answer our research questions.

4.1 RQ1. Do developers refactor code differently for
the purpose of improving reusability?

This research question aims to compare refactoring
activity in reusability commitswith the refactoring activ-
ity that can be found in mainstream development tasks
(feature updates, bug fix, etc.). Since we have a dataset
of all refactorings performed in the 1,828 projects that
we study, we separate refactorings that belong to the
reusability commits (refactorings performed for the pur-
pose of improving reusability), which we refer to as
reusability refactorings.We refer to the remaining refactor-
ings as non-reusability refactorings. Then, for each group,
we calculate the percentage of each refactoring type,
among the total refactorings of that group.

Figure 3 visualizes, by percentage of the total refac-
toring operations in each of the respective sets, the dis-
tributions of refactoring operations. We observe that
the distribution of reusability refactorings varies from
the non-reusability refactorings. In fact, the top frequent
types in reusability refactorings are,Move Method, Ex-
tract Method, and Pull-Up Method, whose percentages
are respectively, 17.29%, 14.85%, and 11.21%. For non-
reusability refactorings, the top frequent type were Re-
name Attribute, Rename Method, and Rename Variable, as
their percentages are respectively, 18.96%, 11.92%, and
11.86%. While the move related types were highly so-
licited in reusability refactorings, the rename activitywas
dominant for non-reusability refactorings, which was
expected since previous studies who analyzed main-
stream refactoring has found that renames are the most
popular refactorings [73,15,58,59]. However, reusabil-
ity refactorings seem to be different. To analyze the
extent to which reusability and non-reusability refac-
torings vary, we compare the distribution of refactor-
ing refactorings identified for each group using the
Wilcoxon signed-rank test, a pairwise statistical test
verifying whether two sets have a similar distribution
[74]. If the p-value is smaller than 0.05, the distribution
difference between the two sets is considered statisti-
cally significant. The choice of Wilcoxon comes from
its non-parametric nature with no assumption of a nor-
mal data distribution. Upon running the statistical test,
the null hypothesis was rejected and the difference be-
tween group distributions was found to be statistically
significant.

Another interesting observation that we draw is the
popularity of method-level refactoring, being in TOP 3

Refactoring for Reuse: An Empirical Study 9

0 2 4 6 8 10 12 14 16 18 20

Extract Method

Inline Method

Rename Method

Move Method

Move Attribute

Pull up Method

Pull up Attribute

Push down Method

Push down Attribute

Extract Superclass

Extract Interface

Move Class

Rename Class

Change Package

Extract Class

Extract Subclass

Extract Variable

Inline Variable

Parameterize Variable

Rename Variable

Rename Parameter

Rename Attribute

Replace Attribute

Move Source Folder

14.85

1.03

4.96

17.29

10.22

11.21

8.96

1.75

1.03

7.78

0.24

5.22

2.02

0.21

2.15

0.17

2.67

0.62

1.06

1.15

1.97

2.9

3 · 10−2

0.51

7.53

1.18

11.92

5.51

6.95

3.56

2 · 10−2

1.34

0.61

0.8

0.25

11.01

3.48

0.36

0.82

0.12

3.37

0.69

0.57

11.86

6.38

18.96

4 · 10−2

0.67

Percentage (%)

With reuse in mind Without reuse in mind

Fig. 3: Percentages of reusability refactoring and non-reusability refactorings, clustered by type.

10 AlOmar et al.

most frequent reusability refactorings. Figure 4 shows
the distribution of code elements impacted by refactor-
ings, and we notice that more than 50% of refactorings
were performed at the method level.

To better understand the observed results, we sam-
pled a subset of reusability refactorings, and we have
extracted two main patterns:

Functionality extraction.When developers are in-
terested in a needed functionality, which is found inside
a long method, containing various functionalities, they
extract the code elements, belonging to the needed func-
tionality, into a newly created separate method, and
they update the original method with the appropri-
ate method calls. This decomposition process is known
as Extract Method. The newly extracted method has its
own visibility, which is independent from the original
method, and so developers can increase its visibility of
the purpose of reuse, and so other objects and methods
can now access it.

Functionalitymovement. To increase the reusability
of a given method, we have noticed that developers
typically move methods from less visible classes, into
more visible classes, in the system. Various methods
were moved into utility classes, which are eventually
offering their services to the other classes in the system,
this explains why Move Method was the most popular
type in reusability refactorings, according to Figure 3.
Our qualitative analysis has also shown scenarios of
moving method up, from a child class, into a super
class, for the purpose of sharing its behavior across
all subclasses through inheritance. This refactoring is
known as Pull-Up Method, which was found to be the
third popular type in reusability refactorings, while
being not popular in non-reusability refactorings.

Summary. We have shown that the distribution
of refactoring types, applied in the context of
reusability, is different from the distribution of
refactoring types inmainstreamdevelopment. In
the refactorings performed to improve reusabil-
ity, files are subject to more design level types of
refactorings (e.g., Move Method, Extract Method)
in general, and inheritance-related refactorings
(e.g., Pull-up Method, Pull-up Attribute) in par-
ticular, while in other refactorings, files tend to
undergo more renames (e.g., Rename Method,
Rename Variable) and data type changes (e.g.,
Change Variable Type) to identifiers. Reusability
refactorings heavily impact, high-level code ele-
ments, such as packages, classes, and methods,
while typical refactorings, impact all code ele-
ments, including identifiers, and parameters.

4.2 RQ2. What is the impact of reusability
refactorings on structural metrics?

To answer this research question, we investigate the
impact of reusability refactorings on the state-of-the-art
metrics, which have been used by previous studies, to
recommend reusability changes. As a reminder, we aim
to look at the variation of each metric value after the
execution of the refactoring, therefore, we checkout the
project files, right before the reusability commit, and we
calculate metrics values, and after the reusability com-
mit, and we recalculate the metrics values. Note that we
only consider files that were involved in the commit, as
there files are considered part of developer’s intention
of improving reusability. The results of metrics boxplots
are outlined in Figure 5. To further investigate the sig-
nificance of difference between the boxplots, we also
use the Wilcoxon Signed-rank Test. Statistical settings
included using a 0.05 alpha value for the significance
level. We hypothesize that reusability refactorings will
optimize metrics by reducing them (the lower is the
value of the metric, the better is the software structural
quality). Our alternative hypothesis is accepted if the
before refactoring boxplot is significantly larger than the
after refactoring boxplot. The Wilcoxon Signed-rank Test
results indicating whether or not there were statistically
significant improvements before and after reusability
commits is shown in Table 5.

According to Figure 5, reusability refactorings had
no impact on the Number of Children (NOC), Depth of
Inheritance Tree (DIT), and Response for Class (RFC).
These results can be explained by the fact that the ma-
jority of reusability refactoring are not targeting classes.
In fact, if we refer to Figure 4, only 13.3% of reusability
refactoring targeted classes, and exctrating subclasses,
which would have impacted these metrics, represent
only 0.13%, and so, its impact is negligible.

On the other hand, we measure an increase in the
weighted methods per class, and the variation is found
to be statistically significant (p < 0.05). According to
Figure 3, the Extract Method refactoring has been found
to be very popular in reusability refactoring, and so,
developers tend to create new methods while extract-
ing the reusable code from the longer methods. This
implies the sudden increase of methods count, per class.
While developers are expected to keep the number of
methods lower in classes, the impact of reusable func-
tionality from longer classes, creates free methods that
can be pulled up to either superclasses, and be shared
with all children, or relocated to operate on variables
that may not belong to its original class. This explains
decrease of the Coupling Between Objects (CBO) and
the slight decrease in the Lack of Cohesion of Meth-

Refactoring for Reuse: An Empirical Study 11

Method
50.12%

Attribute
20.14%

Class
13.33%

Interface 0.24%

Variable
11.57%

Parameter 3.99%

Fig. 4: Distribution of code elements in reusability refactoring commits.

ods (LCOM), which means that methods have become
more cohesive. However, its corresponding statistical
test show no significant different, but its value was close
to 0.05. Similarly, we notice slight improvement in the
Lines of Code (LOC), with no statistical significance
but close p-value (i.e., 0.066). The extraction of meth-
ods helps in reducing cloning functionalities in mul-
tiple locations in the code. Also, pulling methods up
the hierarchy, will allow subclasses to inherit it, and so,
lines of code will decrease, unless when the method
gets overridden. Moreover, the Cyclomatic Complex-
ity (CC) has decreased after reusability code changes
with no statistical significance. A proper extraction of
sub-methods tends to break down long methods, and
slightly decrease their complexity.

As shown in Figure 6, we measure an increase in
the following metrics: the Number of Paths (NPATH),
the Fan-in (FANIN), the Fan-out (FANOUT), the Num-
ber of Instance Methods (NIM), and the variation is
found to be not statistically significant. This observation
indicates that developers increase number of possible
paths, the number of calling subprograms plus global
variables read, the number of called subprograms plus
global variables set, and the number of instance meth-
ods. We also observe We notice the improvement of
fine metrics, namely in the Nesting (MaxNesting), the
Lines with Comments (CLOC), the Number of State-
ments (STMTC), the Number of Classes (CDL), the
Number of Instance Variables (NIV), after the commits
in which developers explicitly target the improvement
of the reusability refactoring, but with no statistical
significance. This indicates that developers reduce the
maximum nesting level of control constructs, the line
containing comments, the number of statements, the
number of classes and the number of declared instance
variables. Further, Similar to the findings of the Depth
of Inheritance Tree (DIT) and the Number of Children
(NOC), reusability refactorings had no impact on the

Number of Base Classes (IFANIN), which emphasizes
on the fact that most of the reusability refactorings are
not targeting immediate base classes.

As a meta-review, the majority of state-of-the-art
metrics did not capture any improvement, or captured
non-significant improvement, when developers refactor
their code for the purpose of reusability. This is an inter-
esting finding for our future research directions, as we
want to further increase our dataset, in terms of projects,
and programming languages, in order to experiment
whether there is a shortage of metrics that properly
measure what developers consider to be at design level
change to improve reusability. Such investigations will
bridge the gap between how existing research on soft-
ware reuse evaluates code changes, and how developers
concretely achieve it.

Summary. When developers refactor their code
for the purpose of reusability, we found that the
number of methods significantly increased, but
the majority of the state-of-the-art metrics did
not capture any improvement, or captured non
significant improvement.

4.3 RQ3. What triggers developers to refactor the
code for the purpose of code reuse?

This research question aims at understanding the
development contexts that trigger developer to per-
form refactoring activities for the purpose of code reuse.
Upon the manual inspection of the reusability refactor-
ing commits performed by the two authors, we identify
and categorize the context of the code reuse used to de-
scribe the motivation behind the refactoring operations
into nine main categories:

– Design Patterns

12 AlOmar et al.

(a) Percent Lack of Cohesion (b) Response for Class

(c) Cyclomatic Complexity (d) Coupling Between Object

(e) Weighted Method per Class (f) Line of Code

(g) Depth of Inheritance Tree (h) Number of Children

Fig. 5: Boxplots for metric values before and after reusability commits for different sets of code elements.

– Duplicate Code Removal
– API Management
– Features Updates
– Bug Fix
– Extract Reusable Component
– Test Code Management
– Visibility Changes
– Other refactoring operations

Figure 7 depicts the categorization of reusability
refactoring commits. The Extract Reusable Components
category had the highest number of commitswith 23.96%
followed by Others and Bug Fix categories with a slight
advantage to the first category, since its ratiowas 19.94%,
while the Bug Fix category had a ratio of 14.34%. We
observe that a few categories had almost a uniform dis-
tribution of refactoring classes with low variability. For
instance, Test Code Management, Design Patterns, and

Refactoring for Reuse: An Empirical Study 13

(a) Paths (b) Nesting

(c) Fan-in (d) Fan-out

(e) Lines with Comments (f) Statements

(g) Classes (h) Instance Variables

(i) Instance Methods (j) Base Classes
Fig. 6: Boxplots for metric values before and after reusability commits for different sets of code elements (Cont.).

14 AlOmar et al.

Table 5: Wilcoxon Signed-Rank Test results for all code elements between before-after versions of reusability
commits.

Metric p-value Impact Reject H0?
Percent Lack of Cohesion (LCOM) 0.0707 +ve False
Response for Class (RFC) 0.2925 No False
Cyclomatic Complexity (CC) 0.3298 +ve False
Coupling Between Objects (CBO) 0.2739 +ve False
Weighted Method per Class (WMC) 0.0372 -ve True
Line of Code (LOC) 0.06621 +ve False
Depth of Inheritance Tree (DIT) 0.7446 No False
Number of Children (NOC) 0.5292 No False
Paths (NPATH) 0.5 -ve False
Nesting (MaxNesting) 0.12 +ve False
Fan-in (FANIN) 0.97 -ve False
Fan-out (FANOUT) 0.94 -ve False
Lines with Comments (CLOC) 0.71 +ve False
Statements (STMTC) 0.19 +ve False
Classes (CDL) 0.35 +ve False
Instance Variables (NIV) 0.30 +ve False
Instance Methods (NIM) 0.45 -ve False
Base Classes (IFANIN) 1.0 No False

Design Patterns 8.05%

Duplicate Code Removal 6.60%

API Management 3.77%
Features Updates 12.64%

Bug Fix
14.34%

Extract Reusable
23.96%

Test Code Management 8.11%Visibility Changes 2.58%

Others
19.94%

Fig. 7: Distribution of code reuse context in reusability refactoring commits.

Duplicate Code Removal had commit message distri-
bution percentages of 8.11%, 8.05%, and 6.60%, respec-
tively. The APIManagement and Visibility Changes had
the least popular categories. In the following section,
we provide a case study for design patterns, duplicate
code removal, and API management categories due to
their popularity within the context of code reuse.

4.3.1 Design Patterns.

Design patterns are technique for achieving reuse
of software architectures [33]. Refactoring is another
technique used for producing better maintainable and
reusable designs. Design patterns and refactoring are
powerful techniques for code reuse and are also related
in the sense that design pattern can be used to guide

refactoring [60]. Fowler et al. [32] demonstrated such
correlation by illustrating how the State Pattern is used
to guide transformations of a program step by step us-
ing refactoring rules. Further, Kerievsky [39] discussed
the pattern-directed refactoring, which can be seen as
big-step refactoring rules toward patterns. In the Gang-
of-Four book [33], design patterns are classified into
three categories: Creational, Structural and Behavioral
patterns. In this paper, we will take one representative
pattern from the Creational design pattern category to
demonstrate the case of code reuse.
Case study. Builder pattern is considered one of the
creational design patterns that helps construct complex
objects step by step. The pattern allows to produce dif-
ferent types and representations of an object using the
same construction code. The commit message (see Fig-

Refactoring for Reuse: An Empirical Study 15

Fig. 8: Commit message stating the implementation of a Builder design pattern [1].

ure 8) indicates improvement in the builder class by
making changes in the code by using Builder pattern.
The developer is trying to match the constructors of the
two classes HyperLogLog and Builderwithout chang-
ing the behaviour of the flow of code. The developer
instead adds a private constructor to try and reduce the
risk of behaviour. Also, another interesting comment in
this commit is:

‘This somewhat goes against the expected Builder pat-
tern, but it’s not as though HyperLogLog. Builder
was really following it anyway’

This indicates that they have used a Builder design
pattern although there is a possibility that it has been
tweaked according to the developer’s needs. This shows
the versatility of the developers and how design pat-
terns can be changed according to one’s need.

After further investigation we found that the devel-
oper has used the Builder design pattern in the code
although it has been changed to accommodate the devel-
oper’s needs. While we have a reader class Builder and
the Builder interface IBuilder interface, the Builder

class is embedded in the HyperLogLog class. The IBuilder
interface consists ofmethod calls build() and sizeOf(),
in Listing 1,which are implemented in the Builder class.
The build()method is of type HyperLogLogwhile sizeOf()
is of Type int as shown in the Listing 2.

The refactoring operations performed in this commit
are Extract Method and Rename Method. Extract Method is
performed on the function public HyperLogLog() from
which the code snippet, as shown in Listings 3 and
4, respectively, is extracted to a new function private

static void validateLog2m(). This function is then
called in the public HyperLogLog() and also in the
private Builder() constructor as shown in in Listing 5.
This refactoring operation can be considered as reusabil-
ity, instead of writing the code snippet twice, it can be
simplified and made more efficient by calling a func-
tion. The second refactoring operation that has been

performed is renaming an attribute, indicated in Listing
5. The variable private double rsd is renamed to pri-
vate final int log2m to keep the naming convention
consistent with the rest of the code.

4.3.2 Duplicate Code Removal.

Reuse of code fragments by copying and pasting
from one location to another is very common approach
during software development. Code duplication is gen-
erally discouraged as it might make the software main-
tenance difficult [37,62,48]. For instance, if the exist-
ing code fragment is copied, bugs need to be fixed at
multiple places, which makes the task inefficient and
error-prone.
Case study. In this case study we are investigating the
refactoring operations performed by the developers
which claim to remove duplicate codes in their git com-
mits. Extending our research in reusability refactoring
commits, we venture into the domain of code smells
and try to find instances where refactoring operations
could aid in improving not only the quality of code but
also remove code smells to some extent. The commit
message in Figure 9, indicates refactoring operation be-
ing performed to remove duplicates from code. Extract
Superclass is a common refactoring operation for remov-
ing the clones while two classes share some common
methods. For example, the detected refactorings are Ex-
tract Superclass operation followed with several Pull Up
Method operations.

By looking into the actual code fragments, Listings
6 and 7 show that the DelegatingList class and Lazy-

ComponentList class have duplicated methods. Note
that there are totally 31 duplicated methods before the
refactoring, we only show parts of them as examples
for a better visualization. To fix this, the developer in-
troduces a new class ListImpl, pulls up those dupli-
cated methods to ListImlp, then makes both Delegat-

ingList and LazyComponentList extends ListImpl. List-

16 AlOmar et al.

Fig. 9: Commit message stating the removal of a duplicate code [2].

LazyComponentList

transformList():List<T>
+ isLazy():boolean
+ isLazyInitialized():boolean
... (another 6 not duplicated methods)

+ clear():void
+ isEmpty():boolean
+ containsAll():boolean
... (another 28 duplicated methods)

DelegatingList

+ getList():List<T>

+ clear():void
+ isEmpty():boolean
+ containsAll():boolean
... (another 28 dulpilicated methods)

(a) Before Refactoring

ListImpl

+ clear():void
+ isEmpty():boolean
+ containsAll():boolean
... (another 20 methods being pulled up)

LazyComponentList

transformList():List<T>
+ isLazy():boolean
+ isLazyInitialized():boolean
... (another 6 not dulplicated methods)

DelegatingList

+ getList():List<T>

(b) After Refactoring
Fig. 10: Duplicate code removal after the application of refactoring.

Listing 1: IBuilder Interface
package com.clearspring.analytics.util;

public interface IBuilder <T> {
T build();
int sizeof ();
}

ings 8, 9 and 10 show part of the refactored codes from
Github. We can see that in Listings 8 and 9 the dupli-
cated methods such clear, isEmpty and containsAll

are being removed, and the DelegatingList class and
LazyComponentList class now extends the newly intro-
duced ListImpl class. Listing 10 shows that the meth-
ods being removed in Listings 8 and 9 are nowpulled up
to the superclass ListImpl. Listings 11 and 12 show the
UML diagrams before the commit and after the commit.
Note that there are 31 duplicated methods before the
refactoring, and only 23 of them are being pulled up.
That is because there are 8 unnecessary methods over-
loading being permanently removed after refactoring.

TheUMLdiagrams (see Figures 10a and 10b) clearly
show that the clones have been removed by the Extract
Superclass operation and the Pull Up Method operations.
This case study gives us an example that the refactorings
removing the code duplication such as Extract Super-
class and Pull Up Method could be helpful for improving
the reusability. With those duplicated methods being
pulled to a superclass, if a new type of List is introduced,
it can reuse those methods since they are common list
operations.

Listing 2: Implementation of build() and sizeof()
public static class Builder implements IBuilder
<ICardinality >, Serializable {
- private double rsd;
+ private final int log2m;
+ /**
+ * Uses the given RSD percentage to determine
+ * how many bytes the constructed HyperLogLog
+ * will use.
+ *
+ * @deprecated Use {@link #withRsd(double)}
+ * instead. This builder ’s constructors did
+ * not match the (already
+ * themselves ambiguous) constructors of the
+ * HyperLogLog class , but there is no way to
+ * make them match without
+ * risking behavior changes downstream.
+ */
+ @Deprecated

public Builder(double rsd) {
- this.rsd = rsd;
+ this(log2m(rsd));
+ }
+ /** This constructor is private to prevent
+ behavior change for ambiguous usages.
+ (Legacy support). */
+ private Builder(int log2m) {
+ validateLog2m(log2m);
+ this.log2m = log2m;

}
@Override
public HyperLogLog build () {

- return new HyperLogLog(rsd);
+ return new HyperLogLog(log2m);

}
@Override
public int sizeof () {

- int log2m = log2m(rsd);
int k = 1 << log2m;
return RegisterSet.getBits(k) * 4;
}

Refactoring for Reuse: An Empirical Study 17

Listing 3: Before refactoring
@Deprecated
public HyperLogLog(int log2m , RegisterSet
registerSet) {

if (log2m < 0 || log2m > 30) {
throw new IllegalArgumentException
("log2m argument is "

+ log2m + " and is outside the range
[0, 30]"); }

this.registerSet = registerSet;
this.log2m = log2m;
int m = 1 << this.log2m;
alphaMM = getAlphaMM(log2m , m);

}
}

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Listing 4: After refactoring
+ private static void validateLog2m(int log2m) {
+ if (log2m < 0 || log2m > 30) {
+ throw new IllegalArgumentException
+

("log2m argument is " + log2m + " and is
+ outside the range [0, 30]");
+ }
+ }
+

/**
* Create a new HyperLogLog instance. The log2m

parameter defines the accuracy of
* the counter. The larger the log2m the better
the accuracy.

@@ -117 ,10 +124 ,7 @@ public HyperLogLog (int log2m) {
*/

@Deprecated
public HyperLogLog(int log2m , RegisterSet
registerSet) {

- if (log2m < 0 || log2m > 30) {
- throw new IllegalArgumentException
- ("log2m argument is "
- + log2m + " and is outside the range
- [0, 30]"); }
+ validateLog2m(log2m);

this.registerSet = registerSet;
this.log2m = log2m;
int m = 1 << this.log2m;
alphaMM = getAlphaMM(log2m , m);

}

Listing 5: validateLog2m() is called in Builder() con-
structor
public static class Builder implements IBuilder
<ICardinality >, Serializable {
- private double rsd;
+ private final int log2m;
+ /**
+

* Uses the given RSD percentage to determine
+

* how many bytes the constructed HyperLogLog
+ * will use.
+ *
+ * @deprecated Use {@link #withRsd(double)}
+ * instead. This builder ’s constructors did
+ * not match the (already
+ * themselves ambiguous) constructors of the
+ * HyperLogLog class , but there is no way to
+ * make them match without
+ * risking behavior changes downstream.
+ */
+ @Deprecated

public Builder(double rsd) {
- this.rsd = rsd;
+ this(log2m(rsd));
+ }
+ /** This constructor is private to prevent
+ behavior change for ambiguous usages.
+ (Legacy support). */
+ private Builder(int log2m) {
+ validateLog2m(log2m);
+ this.log2m = log2m;

}

4.3.3 API Management.

Dig et al. [27] studied the role of refactoring in API
evolution with the goal of reducing the burden of reuse

on maintenance. This requires either minimizing the
amount of change or reducing the cost of adapting to
change. For instance, when a class library that is reused
in many systems is refactored, the systems that reuse it
must change.

Case study. Figure 11 provides an example of API
management code reuse context. Refactoring Miner de-
tects 13 refactoring operations. Although this is a large
number of refactoring operations, only 3 operations
(i.e., Move Class) are directly related to API manage-
ment. The commit message shows that the intention of
the refactoring is to separate APIs into their own classes.
Before the refactoring, the APIs are in their correspond-
ing Repository classes which is a bad practice since the
Repository classes are handling extra functionalities
that should not belong to them. Separating APIs into
their own classes will reduce the coupling in the code
and allow the developer to efficiently reuse theAPIs and
their functionalities. By looking at the refactoring in de-
tails, we can see that the GithubApi, and TokenApi are
being refactored with the move class operations. These
API are being extracted and moved from their original
Repository classes to their own classes to improve code
reusability. Next, we will explain each refactored APIs
to help better understand the developer’s intention.

Listings 13, 15, show that before the refactoring GithubApi,
TokenApi, interface are part of LiveWikiRepository.java7

7 Full file path: LiveGithubReposi-
tory.java/TokenRepository.java/LiveWikiRepository.java

18 AlOmar et al.

Listing 6: DelegatingList Class
public void clear() {

getList ().clear();
}
public void forEach(Consumer <? super T> action) {
getList ().forEach(action);
}
public <T> T[] toArray(IntFunction <T[]> generator

)
{
return getList ().toArray(generator);
}
public boolean isEmpty () {
return getList ().isEmpty ();
}
public boolean removeIf(Predicate <? super T>filter

)
{
return getList ().removeIf(filter);
}
public Spliterator <T> spliterator () {
return getList ().spliterator ();
}
public T set(int index , T element) {
return getList ().set(index , element);
}
public boolean containsAll(Collection <?> c) {
return getList ().containsAll(c);
}

Listing 7: LazyComponentList Class
public void clear() {

getList ().clear();
}
public void forEach(Consumer <? super T> action) {
getList ().forEach(action);
}
public <T> T[] toArray(IntFunction <T[]> generator

)
{
return getList ().toArray(generator);
}
public boolean isEmpty () {
return getList ().isEmpty ();
}
public boolean removeIf(Predicate <? super T>filter

)
{
return getList ().removeIf(filter);
}
public Spliterator <T> spliterator () {
return getList ().spliterator ();
}
public T set(int index , T element) {
return getList ().set(index , element);
}
public boolean containsAll(Collection <?> c) {
return getList ().containsAll(c);
}

Listing 8: LazyComponentList Class (before removing
duplicate)
- public class LazyComponentList <T> implements
- List <T>, WrapsElements , LazyComponents <T> {

private final ComponentInstantiator instantiator;
private final Class <T> componentClass;

@@ -120 ,127 +110 ,4 @@ public String toString () {
return isLazyInitialized () ? getList ().toString ()
: elements.toString ();
}

- public void clear () {
- getList ().clear();
- }
-

public void forEach(Consumer <? super T> action) {
- getList ().forEach(action);
- }
-

public <T> T[] toArray(IntFunction <T[]> generator)
- {
- return getList ().toArray(generator);
- }
- public boolean isEmpty () {
- return getList ().isEmpty ();
- }
-

public boolean removeIf(Predicate <?super T>filter)
- {
- return getList ().removeIf(filter);
- }
- public Spliterator <T> spliterator () {
- return getList ().spliterator ();
- }
- public T set(int index , T element) {
- return getList ().set(index , element);
- }
- public boolean containsAll(Collection <?> c) {
- return getList ().containsAll(c);
- }

Listing 9: LazyComponentList Class (after removing
duplicate)
+ public class LazyComponentList <T> extends
+ ListImpl <T> implements List <T>, WrapsElements ,
+ LazyComponents <T>
{

private final ComponentInstantiator instantiator;
private final Class <T> componentClass;

@@ -120 ,127 +110 ,4 @@ public String toString () {
return isLazyInitialized () ? getList ().toString ()
: elements.toString ();
}
}

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Refactoring for Reuse: An Empirical Study 19

Listing 10: DelegatingList Class (before removing du-
plicate)
- public class DelegatingList <T> implements List <T> {

protected final List <T> list;
/**

@@ -34,127 +24 ,4 @@ public DelegatingList (List <T> list)
{
return list;
}

- public void clear () {
- getList (). clear ();
- }
- public void forEach(Consumer <? super T> action) {
- getList (). forEach(action);
- }
- public <T> T[] toArray(IntFunction <T[]> generator)
- {
- return getList (). toArray(generator);
- }
- public boolean isEmpty () {
- return getList (). isEmpty ();
- }
- public boolean removeIf(Predicate <?super T>filter)
- {
- return getList (). removeIf(filter);
- }
- public Spliterator <T> spliterator () {
- return getList (). spliterator ();
- }
- public T set(int index , T element) {
- return getList (). set(index , element);
- }
- public boolean containsAll(Collection <?> c) {
- return getList (). containsAll(c);
- }

Listing 11: DelegatingList Class (after removing dupli-
cate)
+ public class DelegatingList <T> extends ListImpl <T>
+ implements List <T> {

protected final List <T> list;

/**
@@ -34,127 +24 ,4 @@ public DelegatingList (List <T> list)

{
return list;

}
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Listing 12: ListImpl Class
+ public abstract class ListImpl <T> implements List <T>
+ {
+ public ListImpl () {
+ super ();
+ }
+ public abstract List <T> getList ();
+ public void clear () {
+ getList (). clear ();
+ }
+ public boolean isEmpty () {
+ return getList (). isEmpty ();
+ }
+ public T set(int index , T element) {
+ return getList (). set(index , element);
+ }
+ public boolean containsAll(Collection <?> c) {
+ return getList (). containsAll(c);
+ }
+ public List <T> subList(int fromIndex , int toIndex)
+ {
+ return getList (). subList(fromIndex , toIndex);
+ }
+ public boolean add(T e) {
+ return getList (). add(e);
+ }
+ public boolean remove(Object o) {
+ return getList (). remove(o);
+ }

and is highly coupled with it, which is bad for code
reuse. Listings 14. 16, show after the refactoring, for
better reuse of the GithubApi, TokenApi, interface, it is

being extracted and moved to WikiApi.java8. In this
case, like Listings17 and 18 show, when the other classes
need GithubApi, TokenApi, they can just import anduse
it instead of using the whole LiveGithubRepository,
TokenRepository, that are loadedwith redundant func-
tionalities.

4.3.4 Feature Updates.

Code reuse can be used for the purpose of adding a
new function or update an existing one.

Case study. Figure 12 shows the commit message
and the intentions of the developer which clearly state
the purpose of this refactoring operation, that is, code
reusability. The developer explains the need to no longer
register runners explicitly as agent searches for runner
implementations, which can mean that the developer
intended to remove these runner implementations from
the base classes and store them separately which can be
called implicitly as and when needed.

In Listings 19, 20, and 21, we can see that all these
classes, namely: PackagesInstallerRunner, Package-
sPublishRunner and PackRunner respectively imple-
ment interfaces AgentBuildRunner and AgentBuildRun-
nerInfo provided by jetbrains, that explicitly running

8 Ful file path: GithubApi.java/TokenApi.java/WikiApi.java

20 AlOmar et al.

Fig. 11: Commit message stating the management of the API [3].

function getRunnerInfo()provided by AgentBuildRun-
nerInfo() and canRun().

Apart from the two functions the constructors in
each class in Listings 19, 20, and 21, repeat variables
myNuGetActionFactory and myNuGetActionFactory

which can be considered as repeating code or duplicate
code. This can affect the time consumed by the program
overall at runtime as the program runs all these lines
of code even when not required. Thus, the developer
extracts these repeating components from the classes in
Listings 19, 20, and 21 and moves them to a superclass
NuGetRunnerBase in Listing 22. This superclass is then
extended by each class and this superclass implements
the interfaces AgentBuildRunner and AgentBuildRun-

nerInfo provided by jetbrains. This is considered an
example of feature update, as the features used from
the jetbrains interface classes and the common function-
alities among the classes: PackagesInstallerRunner,
PackagesPublishRunner and PackRunner, are now be-
ing used by each class implicitly via the NuGetRunner-
Base, thus promoting reusability as well.

4.3.5 Bug Fix.

Due to the habit of copy-and-paste in programming,
similar code fragmentsmay contain the same bugwhich
may be neglected to fix during software maintenance.
Developers can reuse existing code and interleave it
with fixing the bug.

Case study. This case study provides an example
of Bug Fix context. The commit (see Figure 13) is in
project JLine which is a Java library for handling con-
sole input. A user reported a bug in the code that the
arrow keys are all reported as ASCII code 27 with the read-
Character method. The problem behind this is there is
no real ASCII code for the arrow keys, and they are
usually represented by two characters rather than one
character. One of the possible solutions is to allow the
user to define their own key bindings in KeyMap, then
while reading an input stream, wait until a valid bind-
ing is found in KeyMap. Currently, method readLine

contains the statements related to processing the pre-
defined key bindings, and there is no access point for

the user to use their own key bindings. To decouple the
functionality of processing key bindings from a large
method and improve the code reusability, the developer
decides to extract those statements from the readLine
method.

As Listings 23 and 24 show, the developer extracted
the part processing the key bindings in method read-

Line to a new method readBinding which can be pub-
licly reused. The readBindingmethodwill take aKeyMap
as an argument, which could be defined by the user. It
will block until there is a matching binding found or
reach the end of line, so it can support reading the two
characters arrow keys.

4.3.6 Extract Reusable Component.

Extracting code elements can be performed with
reusability in mind and there is a high possibility that
used components of the code were extracted.

Case study. The developer mentions pushing some
common methods down into an abstract class in Figure
14, which can be considered as an extract refactoring
operation and thus help improve reusability as the code
can now be used by other classes as well and the im-
plementations can be easily changed in a common file
unless overridden. This saves the developer time and
makes programming very easy and structured.

As shown in Listing 25, the methods in class Pub-
SubElementProcessorAbstract have been extracted from
class NodeCreate as shown in Listings 25 and 26. Upon
further investigation, we checked if there were other
classes that extended the PubSubElementProcessorAb-
stract class and we found multiple other classes that
extend this class. Also, we searched for any functions
used from PubSubElementProcessorAbstract class in
any of the classes that extend it and found a few of
classes, which show the use of functions getNodeCon-
figurationHelper() and setOutQueue().

4.3.7 Test Code Management.

Code reuse helps in reducing testing efforts. Reusing
the code fragments, which have already been unit tested,

Refactoring for Reuse: An Empirical Study 21

Fig. 12: Commit message stating the update of a feature [4].

Fig. 13: Commit message stating the fixing of a bug [5].

reduces and saves testing effort, both in terms of avoid-
ing the need to write additional tests and also by not
having to run those additional tests each time the full
test suite is run.

Case study. Figure 15 provides an example of Test
Code Management context in which developer refac-
tored the transcoder tests for reuse. There are 39 de-
tected refactoring operations including 1 Extract Super-
class and 38Pull UpMethod, where 3 classes are involved -
WhalinTranscoderTest, SerializingTranscoderTest
and BaseTranscoderCase. The WhalinTranscoderTest
and SerializingTranscoderTest share 18 duplicated
methods. To achieve the goal stated by developer in
the commit message, the developer pulled up 18 du-
plicated methods, and extracted 2 methods(testShort,
testCharacter) that are not duplicated but helpful for
future reuse, to a newly introduced class BaseTranscoder-
Case. In the future, the classes that need to be tested
could reuse the test cases in BaseTranscoderCase to
perform some basic tests such as type check and bound-
ary check.

For example, Listings 27 and 28 illustrate the refac-
toring of 4 duplicated methods - testLong, testInt,
testChar, testBoolean shared by both Serializing-

TranscoderTest and WhalinTranscoderTest, and there
are 1method testShort that is only in WhalinTranscoderTest.
Listing 29 shows after the refactoring, all of these 5meth-
ods are being pulled up and extracted to the new class
BaseTranscoderCase to improve reusability.

Listing 13: Before refactoring - LiveGithubReposi-
tory.java
public class LiveGithubRepository implements
GithubRepository {

- interface GithubApi {
- @GET("repos/d4rken/reddit -android -appstore
- /releases/latest ")
- Observable <Release > getLatestRelease ();
+ private Observable <GithubApi.Release >
+ latestReleaseCache;
+ private Observable <List <GithubApi.Contributor >>
+ latestContributorsCache;

- @GET("repos/d4rken/reddit -android
- appstore/contributors ")
- Observable <List <Contributor >>
- getContributors ();
+

public LiveGithubRepository(GithubApi githubApi) {
+ this.githubApi = githubApi;

}

@Override
- public Observable <Release > getLatestRelease () {
+ public Observable <GithubApi.Release >
+ getLatestRelease () {

if (latestReleaseCache == null)
latestReleaseCache
= githubApi.getLatestRelease ().cache();
return latestReleaseCache;

}

@Override
- public Observable <List <Contributor >>
- getContributors () {
+ public Observable <List <GithubApi.Contributor >>
+ getContributors () {

if (latestContributorsCache == null)
latestContributorsCache = githubApi
.getContributors ().cache();
return latestContributorsCache;

}

22 AlOmar et al.

Listing 14: After refactoring - GithubApi.java
+ package subreddit.android.appstore.backend.github;

+ import com.google.gson.annotations.SerializedName;

+ import java.util.Date;
+ import java.util.List;

+ import io.reactivex.Observable;
+ import retrofit2.http.GET;

+ public interface GithubApi {
+ String BASEURL = "https :// api.github.com /";

+ @GET("repos/d4rken/reddit -android -appstore/
+ releases/latest ")
+ Observable <Release > getLatestRelease ();

+ @GET("repos/d4rken/reddit -android -appstore/
+ contributors ")
+ Observable <List <Contributor >> getContributors ();

+ class Release {
+ @SerializedName ("url") public String
+ releaseUrl;
+ @SerializedName (" tag_name ") public String
+ tagName;
+ @SerializedName ("name") public String
+ releaseName;
+ @SerializedName ("body") public String
+ releaseDescription;
+ public boolean prerelease;
+ @SerializedName (" published_at ") public Date
+ publishDate;
+ public List <Assets > assets;

+ public static class Assets {
+ @SerializedName (" browser_download_url ")
+ public String downloadUrl;
+ public long size;
+ }
+ }

+ class Contributor {
+ @SerializedName ("login") public String username;
+ }
+}

Listing 15: Before refactoring - TokenRepository.java
- interface TokenApi {
- @FormUrlEncoded
- @POST("api/v1/access_token ")
- Observable <Token > getUserlessAuthToken(
- @Header (" Authorization ") String
- authentication ,
- @Field (" device_id ") String deviceId ,
- @Field (" grant_type ") String grant_type ,
- @Field ("scope") String scope
-);
- }

4.3.8 Visibility Changes.

Case study. The developers mention splitting up
line of code:- util.MojiBakeMapper and Core::MojiBake
for reuse in the commit message shown in Figure 16.
This refers to mojibake.rb file, Listing 30, although the
extract refactoring operation is seen to be performed
on MojiBakerFilter and MojiMapper indicated by the

Listing 16: After refactoring - TokenApi.java
+ package subreddit.android.appstore.backend.reddit;

+ import io.reactivex.Observable;
+ import retrofit2.http.Field;
+ import retrofit2.http.FormUrlEncoded;
+ import retrofit2.http.Header;
+ import retrofit2.http.POST;

+ public interface TokenApi {
+ String BASEURL = "https :// www.reddit.com /";

+ @FormUrlEncoded
+ @POST("api/v1/access_token ")
+ Observable <TokenApi.Token > getUserlessAuthToken
+ (@Header (" Authorization ") String authentication ,
+ @Field (" device_id ") String deviceId ,
+ @Field (" grant_type ") String grant_type ,
+ @Field ("scope") String scope);

+ class Token {
+ String access_token;
+ String token_type;
+ long expires_in;
+ String scope;
+ final long issuedTime =
+ System.currentTimeMillis ();

+ public boolean isExpired () {
+ return System.currentTimeMillis ()
+ > issuedTime + expires_in * 1000;
+ }

+ public String getAuthorizationString () {
+ return token_type + " " + access_token;
+ }
+ }
+ }

Listing 31, respectively. The extract refactoring opera-
tion is performed on MojiBakeFilter from which the
private method recover of type CharSequencewas ex-
tracted to MojiMapper class as a public method recover
of type CharSequence. Although the commit message
suggests reuse, the refactoring operation is performed
on another file, which can be considered as a case study
for visibility changes as the accessmodifier of themethod
recover of type Charsequence was changed from pri-
vate to public. On further investigation, we searched
for any traces of reusability of the method recover be-
ing extracted and found a few classes that used recover
method.

Summary. Code reuse helps wit various soft-
ware development activities. Our analysis found
that the extraction of reusable component leads
the rationale behind reuse-related code changes.
Refactoring reusable code also helps with API
management, duplicate code removal, changes
to visibility, test code reorganization, and imple-
menting design patterns.

Refactoring for Reuse: An Empirical Study 23

Listing 17: Github API (before)
import android.support.annotation.Nullable;

- import subreddit.android.appstore.backend.github.
- GithubRepository;

import subreddit.android.appstore.util.mvp.
BasePresenter;

import subreddit.android.appstore.util.mvp.BaseView;

@@ -14,22 +14 ,22 @@

void selectFilter(CategoryFilter filter);

- void showUpdateSnackbar(@Nullable
- GithubRepository.Release release);

void showUpdateErrorToast ();

- void enableUpdateAvailableText(@Nullable
- GithubRepository.Release release);

void showDownload(String url);

- void showChangelog(GithubRepository.Release
- release);

}

interface Presenter extends BasePresenter <View > {
void notifySelectedFilter(CategoryFilter
categoryFilter);

- void downloadUpdate(GithubRepository.Release
- release);

- void buildChangelog(GithubRepository.Release
- release);

}
}

Listing 18: Github API (after)
import android.support.annotation.Nullable;

+ import subreddit.android.appstore.backend.github.
+ GithubApi;
import subreddit.android.appstore.util.mvp.

BasePresenter;
import subreddit.android.appstore.util.mvp.BaseView;

@@ -14,22 +14 ,22 @@

void selectFilter(CategoryFilter filter);

+ void showUpdateSnackbar(@Nullable GithubApi
+ .Release release);

void showUpdateErrorToast ();

+ void enableUpdateAvailableText(@Nullable
+ GithubApi.Release release);

void showDownload(String url);

+
void showChangelog(GithubApi.Release release);
}

interface Presenter extends BasePresenter <View > {
void notifySelectedFilter(CategoryFilter
categoryFilter);

+ void downloadUpdate(GithubApi.Release release);

+ void buildChangelog(GithubApi.Release release);
}

}

5 Implications

The main implications of this study are as follows:

– Further exploiting quality metrics and reusability
refactoring. The existing literature discusses differ-
ent automatic refactoring approaches that help prac-
titioners in detecting anti-patterns or code smells.
More recently, Baqais and Alshayeb [21] show that
there is an increase in the number of studies on auto-
matic refactoring approaches and researchers have
begun exploring how machine learning can be used
in identifying refactoring opportunities. Since the
features play a vital role in the quality of the ob-
tained machine learning models, this study can help
determine whichmetrics can be used as effective fea-
tures in machine learning algorithms to accurately
predict refactoring opportunities at different levels
of granularity (i.e., class, method, field), which can
assist developers in automatically making their de-
cisions. For example, using the most impactful met-
rics as a feature to predict whether a given piece
of code should undergo a specific refactoring oper-
ation makes developers more confident in accept-
ing the recommended refactoring or picking out the
most suitable reusable candidate. Such knowledge
is needed as, in practice, the built model should re-
quire as little data as possible. Further, since we ob-
serve from RQ2 that most of the reusability metrics
did not capture any improvement, we plan to con-
duct more experiments to validate the effectiveness
of reusability metrics to explore if the observations
are due to the appropriateness of the reusability
quality metrics or to the needed validation and clar-
ity of developers perception.
Reducing the amount of efforts to refactor the code
to improve its reusability. Generally, reused classes
tend to be more maintainable than native classes.
One particular aspect of refactoring is to increase
the reusability of software components. However, a
recent study [30] found that the reused code is in
need for various refactorings even though the pro-
duced code obeys to good object-oriented practices.
Our study sheds light on developers’ strategies to
refactor the code to improve its reusability that is
different from refactoring applied in mainstream
development (e.g., reusability refactorings heavily
impact methods while typical refactorings, impact
all code elements). Understanding such strategies
assist in providing developers with a more efficient
way to utilize existing code to create new function-
ality, and facilitate development and maintenance
since less work is needed to accomplish additional
functionality.

24 AlOmar et al.

Listing 19: PackagesInstallerRunner Class
- public class PackagesInstallerRunner implements
- AgentBuildRunner , AgentBuildRunnerInfo {
- private static final Logger LOG = Logger.
- getInstance
- (PackagesInstallerRunner.class.getName ());

- private final NuGetActionFactory
- myNuGetActionFactory;
- private final PackagesParametersFactory
- myParametersFactory;

- public PackagesInstallerRunner(@NotNull
- final NuGetActionFactory nuGetActionFactory ,
+ public class PackagesInstallerRunner extends
+ NuGetRunnerBase {
+ public PackagesInstallerRunner(@NotNull
+ final NuGetActionFactory actionFactory ,

@NotNull final PackagesParametersFactory
parametersFactory) {

- myNuGetActionFactory = nuGetActionFactory;
- myParametersFactory = parametersFactory;
+ super(actionFactory , parametersFactory);

}

@NotNull
@@ -72,7 +66 ,7 @@ private void createStages (@NotNull
final BuildRunnerContext context ,

parameters ,
context.getBuild ().getBuildLogger (),
new PackagesInstallerBuilder(

- myNuGetActionFactory ,
+ myActionFactory ,

stages ,
context ,
installParameters ,

@@ -82,27 +76 ,8 @@ private void createStages (@NotNull
final BuildRunnerContext context ,

stages.getLocateStage ().pushBuildProcess(locate);
}

- @NotNull
- public AgentBuildRunnerInfo getRunnerInfo () {
- return this;
- }

@NotNull
public String getType () {

return PackagesConstants.INSTALL_RUN_TYPE;
}

- public boolean canRun(@NotNull
- BuildAgentConfiguration agentConfiguration) {
- if (! agentConfiguration.getSystemInfo ().
- isWindows ()) {

LOG.warn("NuGet packages installer available
only under windows ");
return false;

}

Listing 20: PackagesPublishRunner Class
- public class PackagesPublishRunner implements
- AgentBuildRunner , AgentBuildRunnerInfo {
- private static final Logger LOG =

- Logger.getInstance(PackagesPublishRunner.
- class.getName ());

- private final NuGetActionFactory myActionFactory;
- private final PackagesParametersFactory
- myParametersFactory;

+ public class PackagesPublishRunner extends
+ NuGetRunnerBase {

public PackagesPublishRunner
(@NotNull final NuGetActionFactory actionFactory ,
@NotNull final PackagesParametersFactory
parametersFactory) {

- myActionFactory = actionFactory;
- myParametersFactory = parametersFactory;
+ super(actionFactory , parametersFactory);

}

@NotNull
@@ -63,27 +58 ,8 @@ public void
fileFound(@NotNull File file) throws

RunBuildException {
return process;

}

- @NotNull
- public AgentBuildRunnerInfo getRunnerInfo () {
- return this;
- }

@NotNull
public String getType () {

return PackagesConstants.PUBLISH_RUN_TYPE;
}

- public boolean canRun(@NotNull
- BuildAgentConfiguration agentConfiguration) {
- if (! agentConfiguration.getSystemInfo ().
- isWindows ()) {
- LOG.warn("NuGet packages installer available
- only under windows ");
- return false;
- }

– Examining the code reuse potentials with refactor-
ing. Our study reveals the context in which develop-
ers refactor the code for the purpose of improving
code reusability. Our future research direction can
focus on providing a comprehensive taxonomy of
reusability-aware refactorings. This taxonomy can
show various contexts of reusability refactoring and
demonstrate different forms of reuse. Thereafter, re-
searchers can build on top of our RQ3 findings to
better understand developers practices and investi-

gate towhat extent this reusability-aware refactoring
taxonomy improves the quality of the system.

– Understanding the completeness of the quality
metrics in capturing the reusability improvements
as documented by developers. We observed that
not all of the quality metrics are able to capture the
reusability improvement as perceived by developers
in their commit messages. While quality metrics can
help pinpoint design flaws for refactoring recom-
mendation systems, such recommendation would

Refactoring for Reuse: An Empirical Study 25

Listing 21: PackRunner Class
- public class PackRunner implements AgentBuildRunner ,
- AgentBuildRunnerInfo {
- private static final Logger LOG =
- Logger.getInstance(PackRunner.class.getName ());

- private final NuGetActionFactory myActionFactory;
- private final PackagesParametersFactory
- myParametersFactory;

+ public class PackRunner extends NuGetRunnerBase {
public PackRunner(

@NotNull final NuGetActionFactory actionFactory ,
@NotNull final PackagesParametersFactory
parametersFactory) {

- myActionFactory = actionFactory;
- myParametersFactory = parametersFactory;
+ super(actionFactory , parametersFactory);

}

@NotNull
@@ -54,28 +49 ,8 @@ public BuildProcess
createBuildProcess(@NotNull final AgentRunningBuild
runningB

return process;
}

- @NotNull
- public AgentBuildRunnerInfo getRunnerInfo () {
- return this;
- }

@NotNull
public String getType () {

return PackagesConstants.PACK_RUN_TYPE;
}

- public boolean canRun(@NotNull
- BuildAgentConfiguration
- agentConfiguration) {
- if (! agentConfiguration.getSystemInfo ()
- .isWindows ()) {
- LOG.warn("NuGet packages installer available
- only under windows ");
- return false;
- }
-
- if (! agentConfiguration.
- getConfigurationParameters ().
- containsKey(DotNetConstants.
- DOT_NET_FRAMEWORK_4_x86)) {
- LOG.warn("NuGet requires
- .NET Framework 4.0 x86 installed ");
- return false;
- }

- return true;
- }

Listing 22: NuGetRunnerBase Class
/**
* @author Eugene Petrenko (eugene.petrenko@gmail.com

)
* Date: 23.08.11 18:32
*/

+ public abstract class NuGetRunnerBase implements
+ AgentBuildRunner , AgentBuildRunnerInfo {
+ protected final Logger LOG = Logger.getInstance
+ (getClass ().getName ());

+ protected final NuGetActionFactory
+ myActionFactory;
+ protected final PackagesParametersFactory
+ myParametersFactory;

+ public NuGetRunnerBase(NuGetActionFactory
+ actionFactory ,
+ PackagesParametersFactory parametersFactory) {
+ myActionFactory = actionFactory;
+ myParametersFactory = parametersFactory;
+ }

+ @NotNull
+ public AgentBuildRunnerInfo getRunnerInfo () {
+ return this;
+ }

+ @NotNull
+ public abstract String getType ();

+ public boolean canRun(@NotNull
+ BuildAgentConfiguration
+ agentConfiguration) {
+ if (! agentConfiguration.getSystemInfo ()
+ .isWindows ()) {
+ LOG.warn("NuGet packages installer available
+ only under windows ");
+ return false;
+ }

+ if (! agentConfiguration.
+ getConfigurationParameters ().
+ containsKey(DotNetConstants.
+ DOT_NET_FRAMEWORK_4_x86)) {
+ LOG.warn("NuGet requires .NET Framework
+ 4.0 x86 installed ");
+ return false;
+ }

+ return true;
+ }
+ }

be meaningful if it is complemented with qualitative
insights from developers.

– Extending/varying the basic structure of design
patterns to support real-world applicability. Our
qualitative analysis (see Figure 8) shows that devel-
opers in practice are not following the exact basic
structure of the design patterns that usually appears
in the original documentation of the well-known cat-
alog of patterns [33]. Developers instead alter the
implemented design patterns according to the de-
veloper’s needs. Future researchers are encouraged
to perform a deeper investigation on understand-

ing the mismatch between theory and practice, and
propose an approach that can detect not only pat-
terns in their basic form but also modified versions
of patterns.

6 Threats to Validity

Internal Validity.We analyzed only the 28 refactoring
operations detected by Refactoring Miner, which can
be viewed as a validity threat because the tool did not
consider all refactoring types mentioned by Fowler et
al. [32]. However, in a previous study, Murphy-Hill

26 AlOmar et al.

Fig. 14: Commit message stating the extraction of reusable component [6].

Fig. 15: Commit message stating management of the test code [7].

Listing 23: Before refactoring
- if (c == 27
- && pushBackChar.isEmpty ()
- && in.isNonBlockingEnabled ()
- && in.peek(escapeTimeout) == -2) {
- Object otherKey = ((KeyMap) o).
- getAnotherKey ();
- if (otherKey == null) {
- otherKey = ((KeyMap) o).
- getBound(Character.toString ((char) c));}
- o = otherKey;
- if (o == null || o instanceof KeyMap) {
- continue; }
- sb.setLength (0); }
- else { continue; }
*
*

- while (o == null && sb.length () > 0) {
- c = sb.charAt(sb.length () - 1);
- sb.setLength(sb.length () - 1);
- Object o2 = getKeys ().getBound(sb);
- if (o2 instanceof KeyMap) {
- o = ((KeyMap) o2).getAnotherKey ();
- if (o == null) {
- continue;
- } else {
- pushBackChar.push((char) c);
- }}
*
*
*
*
*
*

Listing 24: After refactoring
+ if (c == ESCAPE
+ && pushBackChar.isEmpty ()
+ && in.isNonBlockingEnabled ()
+ && in.peek(escapeTimeout) == READ_EXPIRED) {
+ Object otherKey = ((KeyMap) o).
+ getAnotherKey ();
+ if (otherKey == null) {

+
otherKey = ((KeyMap) o).getBound(Character.

+ toString ((char) c));
+ }
+ o = otherKey;
+ if (o == null ||
+ o instanceof KeyMap) {
+ continue;
+ }
+ opBuffer.setLength (0);
+ } else {
+ continue;
+ }
*
*
+ while (o == null && opBuffer.length () > 0) {
+ c = opBuffer.charAt(opBuffer.length () - 1);
+

opBuffer.setLength(opBuffer.length () - 1);
+ Object o2 = keys.getBound(opBuffer);
+ if (o2 instanceof KeyMap) {
+

o = ((KeyMap) o2).getAnotherKey ();
+ if (o == null) {
+ continue;
+ } else {
+ pushBackChar.push((char) c);
+ }}

et al. [52] reported that these types are amongst the
most common refactoring types. Moreover, we did not
perform a manual validation of refactoring types de-
tected by Refactoring Miner to assess its accuracy, so
our study is mainly threatened by the accuracy of the
detection tool. Yet, Tsantalis et al. [73] reported that
Refactoring Miner has a precision of 98% and a recall of
87% which significantly outperforms the previous state-
of-the-art tools, which gives us confidence in using the

tool. Another threat to validity is that, as we mentioned
above, while we determined whether a commit has a
reusability change, we only look for terms like reus in
the commit message, although not all reusability com-
mit messages may contain those words. Another critical
threat, is the fact that not all refactorings are root-canal.
Developers may be interleaving refactorings with other
types of changes, and so, this may become a noise in our
measurements. To mitigate this issue, we considered

Refactoring for Reuse: An Empirical Study 27

Fig. 16: Commit message stating the case of visibility changes [8].

Listing 25: PubSubElementProcessorAbstract Class

+ public abstract class PubSubElementProcessorAbstract
+ implements PubSubElementProcessor
+ {

+ protected BlockingQueue <Packet > outQueue;
+ protected DataStore dataStore;
+ protected Element element;
+ protected IQ response;
+ protected IQ request;
+ protected JID actor;
+ protected String serverDomain;
+ protected String topicsDomain;
+ protected String node;
+ protected Helper configurationHelper;
+ public void setOutQueue(BlockingQueue <Packet >
+ outQueue)
+ {
+ this.outQueue = outQueue;
+ }
+ public void setDataStore(DataStore dataStore)
+ {
+ this.dataStore = dataStore;
+ }
+ public void setServerDomain(String domain)
+ {
+ serverDomain = domain;
+ }
*
*
*
*
*
*
*
*

Listing 26: NodeCreate Class
- public class NodeCreate implements
- PubSubElementProcessor
+ public class NodeCreate extends
+ PubSubElementProcessorAbstract
{
- private static final Logger LOGGER =
- Logger.getLogger(NodeCreate.class);
- private BlockingQueue <Packet > outQueue;
- private DataStore dataStore;
- private Element element;
- private IQ response;
- private IQ request;
- private JID actor;
- private String serverDomain;
- private String topicsDomain;
- private String node;
- private Helper configurationHelper;

private static final Pattern nodeExtract =
Pattern

.compile ("^/ user /[^@]+@([^/]+) /[^/]+$");
private static final String NODE_REG_EX
= "^/ user /[^@]+@[^/]+/[^/]+$";

@@ -46,16 +36 ,6 @@ public NodeCreate
(BlockingQueue <Packet > outQueue , DataStore dataStore)

setOutQueue(outQueue);
}

- public void setOutQueue(BlockingQueue <Packet >
- outQueue)
- {
- this.outQueue = outQueue;
- }
-
- public void setDataStore(DataStore dataStore)
- {
- this.dataStore = dataStore;
- }

commits that both contain an explicit statement about
reusability, and contain at least one refactoring opera-
tion, in order to correlate between the refactoring and its
documentation. Also, the existence of several unrelated
files, in the commit, as part of other changes, can also be-
come a noise for our metrics measurements. To mitigate
this threat, we measure the metrics for code elements
that are being refactored, and not all the changed files
in the reusability commit.
ExternalValidity.Thefirst threat is that the analysiswas
restricted to only open source, Java-based, Git-based
repositories. However,wewere still able to analyze 1,828
projects that are highly varied in size, contributors, num-
ber of commits and refactorings.
Construct Validity. A potential threat to construct va-
lidity relates to the set of metrics, as it may miss some
properties of the selected internal quality attributes. To

mitigate this threat, we select well-known metrics that
cover various properties of each attribute, as reported
in the literature [26].

While our experiments rely on mining the intention
of developers through their explicit documentation in
code, which is in line with what has been done by var-
ious recent studies [55,15,11,54,31,35], this may not
cover the whole spectrum of all the code changes done
with reuse in mind. Thus, we might be missing some
code changes that were performed with that aspect but
without any explicit documentation about it (i.e., false
negatives). Therefore, it would be interesting to further
investigate the impact of reusability on code changes by
interviewing developers about it.

28 AlOmar et al.

Listing 27: Before refactoring - In Serializing-
TranscoderTest.java)
- public void testLong () throws Exception {
-

assertEquals (923l, tc.decode(tc.encode (923l)));
- }
- public void testInt () throws Exception {
- assertEquals (923, tc.decode(tc.encode (923)));
- }
- public void testChar () throws Exception {
- assertEquals(’c’, tc.decode(tc.encode(’c’)));
- }
- public void testBoolean () throws Exception {
- assertSame(Boolean.TRUE ,
- tc.decode(tc.encode(true)));
- assertSame(Boolean.FALSE ,
- tc.decode(tc.encode(false)));
- }

Listing 28: Before refactoring - In Whalin-
TranscoderTest.java
- public void testLong () throws Exception {
-

assertEquals (923l, tc.decode(tc.encode (923l)));
- }
- public void testInt () throws Exception {
- assertEquals (923, tc.decode(tc.encode (923)));
- }
- public void testShort () throws Exception {
- assertEquals ((short)923, tc.decode(
- tc.encode ((short)923)));
- }
- public void testChar () throws Exception {
- assertEquals(’c’, tc.decode(tc.encode(’c’)));
- }
- public void testBoolean () throws Exception {
- assertSame(Boolean.TRUE ,
- tc.decode(tc.encode(true)));
- assertSame(Boolean.FALSE ,
- tc.decode(tc.encode(false)));
- }

Listing 29: After refactoring - In BaseTranscoder-
Case.java
+ public void testLong () throws Exception {
+

assertEquals (923l, tc.decode(tc.encode (923l)));
+ }
+ public void testInt () throws Exception {
+ assertEquals (923, tc.decode(tc.encode (923)));
+ }
+ public void testShort () throws Exception {
+ assertEquals ((short)923,
+ tc.decode(tc.encode ((short)923)));
+ }
+ public void testChar () throws Exception {
+ assertEquals(’c’, tc.decode(tc.encode(’c’)));
+ }
+ public void testBoolean () throws Exception {
+ assertSame(Boolean.TRUE ,
+ tc.decode(tc.encode(true)));
+ assertSame(Boolean.FALSE ,
+ tc.decode(tc.encode(false)));
+ }

Listing 30: mojibake.rb
require ’iudex -core ’
require ’java ’

-module Iudex::Core:: Filters
- import ’iudex.core.filters.MojiBakeFilter ’
-
- # Re-open iudex.core.filters.MojiBakeFilter to add
- config file
- # based initialization.
- class MojiBakeFilter
+ module Iudex::Core

+ module MojiBake
DEFAULT_CONFIG = File.join(File.dirname
(__FILE__),

’..’, ’..’, ’config ’,
’mojibake ’)

Listing 31: MojiBakeFilter Class
- private CharSequence recover(CharSequence in)
- {
- Matcher m = _mojiPattern.matcher(in);
- StringBuilder out = new StringBuilder(
- in.length ());
- int last = 0;
- while(m.find()) {
- out.append(in , last , m.start());
- String moji = in.subSequence(m.start(),
- m.end()).toString ();
- out.append(_mojis.get(moji));
- last = m.end();
- }
- out.append(in , last , in.length ());

- if(out.length () < in.length ()) {
- return recover(out);
- }
- else {
- return out;
- }
- }

- private final Key <CharSequence > _field;
-
- private final Pattern _mojiPattern;
- private final HashMap <String , String > _mojis;
+ private final MojiBakeMapper _mapper;
}

Listing 32: MojiBakeMapper Class
+ public class MojiBakeMapper
+ {
+ public MojiBakeMapper(String regex ,
+

Map <String ,String > mojis)
+ {
+ _mojiPattern = Pattern.compile(regex);
+

_mojis = new HashMap <String ,String >(mojis);
+ }
+ public CharSequence recover(CharSequence in)
+ {
+ Matcher m = _mojiPattern.matcher(in);
+ StringBuilder out = new StringBuilder(
+ in.length ());
+ int last = 0;
+ while(m.find()) {
+ out.append(in , last , m.start ());
+ String moji = in.subSequence(m.start(),
+ m.end()).toString ();
+ out.append(_mojis.get(moji));
+ last = m.end();
+ }
+ out.append(in, last , in.length ());

+ if(out.length () < in.length ()) {
+ return recover(out);
+ }
+ else {
+ return out;
+ }
+ }
+ private final Pattern _mojiPattern;
+ private final HashMap <String , String > _mojis;
+ }

Refactoring for Reuse: An Empirical Study 29

7 Conclusion

In this paper, we performed a study on analyzing
reusability refactorings based on information in Java
projects from our dataset. We found that in reusability
refactorings, the changes developers performed would
significantly affect metrics pertaining to methods, but
not significantly affect metrics regarding comments or
cohesion of classes. We also found that less than 0.4%
commits are reusability refactorings in 154,820 com-
mits. Another fact we found is that method is modified
more frequently in reusability refactoring changes. Our
results have shown some existing facts in reusability
refactorings, and those findings could help developers
to make better decisions while performing reusability
refactorings in the future.

Some recommendations thatwe have for futurework
involve comparing different subsections of data, and
determining what refactorings are related to reusabil-
ity. Specifically, we think that it would be interesting
to compare the results that we got to instances where
each individual refactoring detected was analyzed to
explore if it was done for reusability or not, to see if
us grouping all refactorings in a commit for reusability
and non-reusability is similar. We also think that ana-
lyzing the code before and after the reusability commits
for different metrics that are more usability based, such
as adaptability, understandability, or portability, could
be an interesting future work, though an issue might
arise to finding specific ways to measure those metrics.
Moreover, we plan to find a better way to figure out if a
commit was a reusability refactoring or not. Since this
work relies on the commit message, there could be com-
mits incorrectly labeled, or commits that are reusability
but not labeled as such that we are missing.

Further, we designed our study with the goal of bet-
ter understandingdeveloper perception of code reusabil-
ity within the open source community. Further research
in this regard is needed (e.g., running contextual in-
terviews with developers to uncover the underpinning
reasons for code reuse during refactorings). As with
every study, the results may not generalize to other con-
texts. Extending this work with the industry partners is
part of our future investigation to challenge our current
findings.

References

1. https://github.com/addthis/stream-lib/commit/
06bdb3f569a7fac50d5e1801359324e16929c270

2. https://github.com/FluentLenium/FluentLenium/commit/
5296f9f4bcb7067d8c3220347d806772b10659da

3. https://github.com/d4rken/reddit-android-appstore/
commit/7f5d41f6d16fb445b139cad034ca4d312c7ab320

4. https://github.com/JetBrains/teamcity-nuget-support/
commit/fd232f43bc08ff0d91b257d2aca5ebc3a6aef1e4

5. https://github.com/jline/jline2/commit/
54673e36c516e2bdfbacc11035f5942fcaa043a0

6. https://github.com/buddycloud/buddycloud-server-java/
commit/a9e5d24e5d18860eafd755866e9d39b8654e2fa1

7. https://github.com/dustin/java-memcached-client/
commit/df6cd926366f46878bf37d27cefce03fa922ad14

8. https://github.com/dekellum/iudex/commit/
ee85ac1684639745e0a767b97a236eead8c4db31

9. Abdalkareem, R., Shihab, E., Rilling, J.: On code reuse from
stackoverflow: An exploratory study on android apps. Infor-
mation and Software Technology 88, 148–158 (2017)

10. Ahmaro, I., Abualkishik, A., Yusof, M.: Taxonomy, definition,
approaches, benefits, reusability levels, factors and adaption
of software reusability: A review of the research literature.
Journal of Applied Sciences 14 (2014)

11. AlOmar, E.A., Barinas, D., Liu, J., Mkaouer, M.W., Ouni, A.,
Newman, C.: An exploratory study on how software reuse is
discussed in stack overflow. In: International Conference on
Software and Software Reuse, pp. 292–303. Springer (2020)

12. AlOmar, E.A., Mkaouer, M.W., Newman, C., Ouni, A.: On
preserving the behavior in software refactoring: A systematic
mapping study. Information and Software Technology p.
106675 (2021)

13. AlOmar, E.A., Mkaouer, M.W., Ouni, A.: Can refactoring be
self-affirmed? an exploratory study on how developers doc-
ument their refactoring activities in commit messages. In:
2019 IEEE/ACM 3rd International Workshop on Refactoring
(IWoR), pp. 51–58. IEEE (2019)

14. AlOmar, E.A., Mkaouer, M.W., Ouni, A.: Toward the auto-
matic classification of self-affirmed refactoring. Journal of
Systems and Software p. 110821 (2020)

15. AlOmar, E.A., Mkaouer, M.W., Ouni, A., Kessentini, M.: On
the impact of refactoring on the relationship between quality
attributes and design metrics. In: 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1–11. IEEE (2019)

16. AlOmar, E.A., Peruma, A., Mkaouer, M.W., Newman, C.,
Ouni, A., Kessentini, M.: How we refactor and how we doc-
ument it? on the use of supervised machine learning algo-
rithms to classify refactoring documentation. Expert Systems
with Applications p. 114176 (2020)

17. AlOmar, E.A., Rodriguez, P.T., Bowman, J.,Wang, T., Adepoju,
B., Lopez, K., Newman, C., Ouni, A., Mkaouer, M.W.: How
do developers refactor code to improve code reusability? In:
International Conference on Software and Software Reuse,
pp. 261–276. Springer (2020)

18. Alshayeb, M.: Empirical investigation of refactoring effect on
software quality. Information and software technology 51(9),
1319–1326 (2009)

19. An, L., Mlouki, O., Khomh, F., Antoniol, G.: Stack overflow: A
code laundering platform? In: 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pp. 283–293. IEEE (2017)

20. Anguswamy, R., Frakes, W.B.: A study of reusability, com-
plexity, and reuse design principles. In: Proceedings of the
ACM-IEEE International Symposium on Empirical Software
Engineering andMeasurement, ESEM ’12, p. 161–164. Associ-
ation for Computing Machinery, New York, NY, USA (2012).
DOI 10.1145/2372251.2372280. URL https://doi.org/10.1145/
2372251.2372280

21. Baqais, A.A.B., Alshayeb, M.: Automatic software refactoring:
a systematic literature review. SoftwareQuality Journal 28(2),
459–502 (2020)

22. Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., Palomba,
F.: An experimental investigation on the innate relationship

https://github.com/addthis/stream-lib/commit/06bdb3f569a7fac50d5e1801359324e16929c270
https://github.com/addthis/stream-lib/commit/06bdb3f569a7fac50d5e1801359324e16929c270
https://github.com/FluentLenium/FluentLenium/commit/5296f9f4bcb7067d8c3220347d806772b10659da
https://github.com/FluentLenium/FluentLenium/commit/5296f9f4bcb7067d8c3220347d806772b10659da
https://github.com/d4rken/reddit-android-appstore/commit/7f5d41f6d16fb445b139cad034ca4d312c7ab320
https://github.com/d4rken/reddit-android-appstore/commit/7f5d41f6d16fb445b139cad034ca4d312c7ab320
https://github.com/JetBrains/teamcity-nuget-support/commit/fd232f43bc08ff0d91b257d2aca5ebc3a6aef1e4
https://github.com/JetBrains/teamcity-nuget-support/commit/fd232f43bc08ff0d91b257d2aca5ebc3a6aef1e4
https://github.com/jline/jline2/commit/54673e36c516e2bdfbacc11035f5942fcaa043a0
https://github.com/jline/jline2/commit/54673e36c516e2bdfbacc11035f5942fcaa043a0
https://github.com/buddycloud/buddycloud-server-java/commit/a9e5d24e5d18860eafd755866e9d39b8654e2fa1
https://github.com/buddycloud/buddycloud-server-java/commit/a9e5d24e5d18860eafd755866e9d39b8654e2fa1
https://github.com/dustin/java-memcached-client/commit/df6cd926366f46878bf37d27cefce03fa922ad14
https://github.com/dustin/java-memcached-client/commit/df6cd926366f46878bf37d27cefce03fa922ad14
https://github.com/dekellum/iudex/commit/ee85ac1684639745e0a767b97a236eead8c4db31
https://github.com/dekellum/iudex/commit/ee85ac1684639745e0a767b97a236eead8c4db31
https://doi.org/10.1145/2372251.2372280
https://doi.org/10.1145/2372251.2372280

30 AlOmar et al.

between quality and refactoring. Journal of Systems and
Software 107, 1–14 (2015)

23. Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D.,
De Lucia, A.: An empirical study on the developers’ percep-
tion of software coupling. In: Proceedings of the 2013 Inter-
national Conference on Software Engineering, pp. 692–701.
IEEE Press (2013)

24. Cedrim, D., Sousa, L., Garcia, A., Gheyi, R.: Does refactoring
improve software structural quality? a longitudinal study of
25 projects. In: Proceedings of the 30th Brazilian Symposium
on Software Engineering, pp. 73–82. ACM (2016)

25. Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D., Garcia,
A.: How does refactoring affect internal quality attributes?:
A multi-project study. In: Proceedings of the 31st Brazilian
Symposium on Software Engineering, pp. 74–83. ACM (2017)

26. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object
oriented design. IEEE Transactions on software engineering
20(6), 476–493 (1994)

27. Dig, D., Johnson, R.: The role of refactorings in api evolution.
In: 21st IEEE International Conference on Software Mainte-
nance (ICSM’05), pp. 389–398. IEEE (2005)

28. Du Bois, B., Mens, T.: Describing the impact of refactoring
on internal program quality. In: International Workshop on
Evolution of Large-scale Industrial Software Applications,
pp. 37–48 (2003)

29. Fakhoury, S., Roy, D., Hassan, A., Arnaoudova, V.: Improv-
ing source code readability: theory and practice. In: 2019
IEEE/ACM 27th International Conference on Program Com-
prehension (ICPC), pp. 2–12. IEEE (2019)

30. Feitosa, D., Ampatzoglou, A., Gkortzis, A., Bibi, S., Chatzi-
georgiou, A.: Code reuse in practice: Benefiting or harming
technical debt. Journal of Systems and Software 167, 110618
(2020)

31. Fernandes, E., Chávez, A., Garcia, A., Ferreira, I., Cedrim, D.,
Sousa, L., Oizumi, W.: Refactoring effect on internal quality
attributes: What haven’t they told you yet? Information and
Software Technology 126, 106347 (2020)

32. Fowler, M.: Refactoring: improving the design of existing
code. Addison-Wesley Professional (2018)

33. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Patterns, D.:
Elements of reusable object-oriented software. Design Pat-
terns. massachusetts: Addison-Wesley Publishing Company
(1995)

34. Ghofrani, J., Kozegar, E., Bozorgmehr, A., Soorati, M.D.:
Reusability in artificial neural networks: An empirical study.
In: Proceedings of the 23rd International Systems and Soft-
ware Product Line Conference - Volume B, SPLC ’19, p.
122–129. Association for Computing Machinery, New York,
NY, USA (2019). DOI 10.1145/3307630.3342419. URL https:
//doi.org/10.1145/3307630.3342419

35. Hamdi, O., Ouni, A., AlOmar, E.A., Cinnéide, M.Ó., Mkaouer,
M.W.: An empirical study on the impact of refactoring on
quality metrics in android applications. In: 2021 IEEE/ACM
8th International Conference onMobile Software Engineering
and Systems (MobileSoft), pp. 28–39. IEEE (2021)

36. Hegedűs, G., Hrabovszki, G., Hegedűs, D., Siket, I.: Effect
of object oriented refactorings on testability, error proneness
and other maintainability attributes. In: Proceedings of the
1st Workshop on Testing Object-Oriented Systems, p. 8. ACM
(2010)

37. Hotta, K., Sano, Y., Higo, Y., Kusumoto, S.: Is duplicate code
more frequently modified than non-duplicate code in soft-
ware evolution? an empirical study on open source software.
In: Proceedings of the Joint ERCIMWorkshop on Software
Evolution (EVOL) and International Workshop on Principles
of Software Evolution (IWPSE), pp. 73–82 (2010)

38. Jones, B., Litvintchouk, S., Mungle, J., Krasner, H., Mellby, J.,
Willman, H.: Issues in software reusability. Ada Lett. IV(5),
97–99 (1985). DOI 10.1145/1041339.1041345. URL https:
//doi.org/10.1145/1041339.1041345

39. Kerievsky, J.: Refactoring to patterns. Pearson Deutschland
GmbH (2005)

40. Leitch, R., Stroulia, E.: Assessing the maintainability bene-
fits of design restructuring using dependency analysis. In:
Proceedings. 5th International Workshop on Enterprise Net-
working and Computing in Healthcare Industry (IEEE Cat.
No. 03EX717), pp. 309–322. IEEE (2003)

41. Lorenz, M., Kidd, J.: Object-oriented software metrics, vol.
131. Prentice Hall Englewood Cliffs (1994)

42. Lotter, A., Licorish, S.A., Savarimuthu, B.T.R., Meldrum, S.:
Code reuse in stack overflow and popular open source java
projects. In: 2018 25th Australasian Software Engineering
Conference (ASWEC), pp. 141–150. IEEE (2018)

43. Lubars, M.D.: Code reusability in the large versus code
reusability in the small. SIGSOFT Softw. Eng. Notes 11(1),
21–28 (1986). DOI 10.1145/382300.382307. URL https:
//doi.org/10.1145/382300.382307

44. Makady, S., Walker, R.J.: Test code reuse from oss: Current
and future challenges. In: Proceedings of the 3rd Africa and
Middle East Conference on Software Engineering, AMECSE
’17, p. 31–36. Association for Computing Machinery, New
York, NY, USA (2017). DOI 10.1145/3178298.3178305. URL
https://doi.org/10.1145/3178298.3178305

45. McCabe, T.J.: A complexity measure. IEEE Transactions on
software Engineering (4), 308–320 (1976)

46. Mkaouer, M.W., Kessentini, M., Bechikh, S., Cinnéide, M.Ó.,
Deb, K.: On the use of many quality attributes for software
refactoring: a many-objective search-based software engineer-
ing approach. Empirical Software Engineering 21(6), 2503–
2545 (2016)

47. Mockus, A.: Large-scale code reuse in open source software.
In: Proceedings of the First InternationalWorkshop on Emerg-
ing Trends in FLOSS Research and Development, FLOSS
’07, p. 7. IEEE Computer Society, USA (2007). DOI 10.1109/
FLOSS.2007.10. URL https://doi.org/10.1109/FLOSS.2007.10

48. Mondal, M., Rahman, M.S., Saha, R.K., Roy, C.K., Krinke, J.,
Schneider, K.A.: An empirical study of the impacts of clones
in software maintenance. In: 2011 IEEE 19th International
Conference on Program Comprehension, pp. 242–245. IEEE
(2011)

49. Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., Succi,
G.: A case study on the impact of refactoring on quality and
productivity in an agile team. In: IFIP Central and East Eu-
ropean Conference on Software Engineering Techniques, pp.
252–266. Springer (2007)

50. Moser, R., Sillitti, A., Abrahamsson, P., Succi, G.: Does refac-
toring improve reusability? In: International Conference on
Software Reuse, pp. 287–297. Springer (2006)

51. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating
github for engineered software projects. Empirical Software
Engineering 22(6), 3219–3253 (2017)

52. Murphy-Hill, E., Parnin, C., Black, A.P.: Howwe refactor, and
how we know it. IEEE Transactions on Software Engineering
38(1), 5–18 (2012)

53. Opdyke, W.F.: Refactoring object-oriented frameworks (1992)
54. Paixão, M., Uchôa, A., Bibiano, A.C., Oliveira, D., Garcia, A.,

Krinke, J., Arvonio, E.: Behind the intents: An in-depth empir-
ical study on software refactoring in modern code review. In:
Proceedings of the 17th International Conference on Mining
Software Repositories, pp. 125–136 (2020)

55. Pantiuchina, J., Lanza, M., Bavota, G.: Improving code: The
(mis) perception of quality metrics. In: 2018 IEEE Interna-
tional Conference on Software Maintenance and Evolution
(ICSME), pp. 80–91. IEEE (2018)

https://doi.org/10.1145/3307630.3342419
https://doi.org/10.1145/3307630.3342419
https://doi.org/10.1145/1041339.1041345
https://doi.org/10.1145/1041339.1041345
https://doi.org/10.1145/382300.382307
https://doi.org/10.1145/382300.382307
https://doi.org/10.1145/3178298.3178305
https://doi.org/10.1109/FLOSS.2007.10

Refactoring for Reuse: An Empirical Study 31

56. Patrick,M.T.: Exploring software reusabilitymetricswith q&a
forum data. Journal of Systems and Software 168, 110652
(2020)

57. Patwa, S., Malviya, A.K.: Reusability metrics and effect of
reusability on testing of object oriented systems. SIGSOFT
Softw. Eng. Notes 37(5), 1–4 (2012). DOI 10.1145/2347696.
2347708. URL https://doi.org/10.1145/2347696.2347708

58. Peruma, A., Mkaouer, M.W., Decker, M.J., Newman, C.D.:
Contextualizing rename decisions using refactorings, commit
messages, and data types. Journal of Systems and Software
p. 110704 (2020)

59. Peruma, A., Newman, C.D., Mkaouer, M.W., Ouni, A.,
Palomba, F.: An exploratory study on the refactoring of unit
test files in android applications. In: Conference on Software
Engineering Workshops (ICSEW’20) (2020)

60. Quan, L., Zongyan, Q., Liu, Z.: Formal use of design patterns
and refactoring. In: International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation,
pp. 323–338. Springer (2008)

61. Robson, C.: Real world research: A resource for social scien-
tists and practitioner-researchers. Wiley-Blackwell (2002)

62. Roy, C.K., Zibran, M.F., Koschke, R.: The vision of software
clonemanagement: Past, present, and future (keynote paper).
In: 2014 Software Evolution Week-IEEE Conference on Soft-
ware Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pp. 18–33. IEEE (2014)

63. Runeson, P., Höst, M.: Guidelines for conducting and report-
ing case study research in software engineering. Empirical
software engineering 14(2), 131–164 (2009)

64. Sahraoui, H.A., Godin, R., Miceli, T.: Can metrics help to
bridge the gap between the improvement of oo design quality
and its automation? In: icsm, p. 154. IEEE (2000)

65. Sharma, A., Grover, P.S., Kumar, R.: Reusability assessment
for software components. SIGSOFT Softw. Eng. Notes 34(2),
1–6 (2009)

66. Sharma, A., Kumar, R., Grover, P.: A critical survey of reusabil-
ity aspects for component-based systems. World academy of
science, Engineering and Technology 19, 411–415 (2007)

67. Shatnawi, R., Li, W.: An empirical assessment of refactor-
ing impact on software quality using a hierarchical quality
model. International Journal of Software Engineering and Its
Applications 5(4), 127–149 (2011)

68. Stroggylos, K., Spinellis, D.: Refactoring–does it improve soft-
ware quality? In: Fifth International Workshop on Software
Quality (WoSQ’07: ICSE Workshops 2007), pp. 10–10. IEEE
(2007)

69. Stroulia, E., Kapoor, R.: Metrics of refactoring-based devel-
opment: An experience report. In: OOIS 2001, pp. 113–122.
Springer (2001)

70. Szóke, G., Antal, G., Nagy, C., Ferenc, R., Gyimóthy, T.: Bulk
fixing coding issues and its effects on software quality: Is it
worth refactoring? In: 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, pp.
95–104. IEEE (2014)

71. Tahvildari, L., Kontogiannis, K.: A metric-based approach
to enhance design quality through meta-pattern transforma-
tions. In: Seventh European Conference onSoftware Mainte-
nance and Reengineering, 2003. Proceedings., pp. 183–192.
IEEE (2003)

72. Tahvildari, L., Kontogiannis, K., Mylopoulos, J.: Quality-
driven software re-engineering. Journal of Systems and Soft-
ware 66(3), 225–239 (2003)

73. Tsantalis, N., Mansouri, M., Eshkevari, L.M., Mazinanian, D.,
Dig, D.: Accurate and efficient refactoring detection in commit
history. In: Proceedings of the 40th International Conference
on Software Engineering, pp. 483–494. ACM (2018)

74. Wilcoxon, F.: Individual comparisons by ranking methods.
Biometrics bulletin 1(6), 80–83 (1945)

75. Wilking, D., Kahn, U.F., Kowalewski, S.: An empirical evalua-
tion of refactoring. e-Informatica 1(1), 27–42 (2007)

76. Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B.,
Wesslen, A.: Experimentation in software engineering: an
introduction. (2000)

77. Yin, W., Tanik, M.M., Yun, D.Y.Y., Lee, T.J., Dale, A.G.: Soft-
ware reusability: A survey and a reusability experiment. In:
Proceedings of the 1987 Fall Joint Computer Conference on
Exploring Technology: Today and Tomorrow, ACM ’87, p.
65–72. IEEE Computer Society Press, Washington, DC, USA
(1987)

78. Younoussi, S., Roudies, O.: All about software reusability:
A systematic literature review. Journal of Theoretical and
Applied Information Technology 76, 64–75 (2015)

https://doi.org/10.1145/2347696.2347708

	Introduction
	Related Work
	Studies on Software Reusability
	Studies on Software Quality

	Experimental Design
	Selection of Quality Attributes and Structural Metrics
	Refactoring Detection
	Reusability Commits Extraction
	Metrics Calculation
	Manual Analysis

	Results
	RQ1. Do developers refactor code differently for the purpose of improving reusability?
	RQ2. What is the impact of reusability refactorings on structural metrics?
	RQ3. What triggers developers to refactor the code for the purpose of code reuse?
	Design Patterns.
	Duplicate Code Removal.
	API Management.
	Feature Updates.
	Bug Fix.
	Extract Reusable Component.
	Test Code Management.
	Visibility Changes.

	Implications
	Threats to Validity
	Conclusion

