
On Preserving the Behavior in Software Refactoring: A
Systematic Mapping Study

Eman Abdullah AlOmara,∗, Mohamed Wiem Mkaouera, Christian Newmana,
Ali Ounib

aRochester Institute of Technology, Rochester, NY, USA
bETS Montreal, University of Quebec, Montreal, QC, Canada

Abstract

Context: Refactoring is the art of modifying the design of a system without
altering its behavior. The idea is to reorganize variables, classes and meth-
ods to facilitate their future adaptations and comprehension. As the concept
of behavior preservation is fundamental for refactoring, several studies, using
formal verification, language transformation and dynamic analysis, have been
proposed to monitor the execution of refactoring operations and their impact
on the program semantics. However, there is no existing study that examines
the available behavior preservation strategies for each refactoring operation.
Objective: This paper identifies behavior preservation approaches in the re-
search literature.
Method: We conduct, in this paper, a systematic mapping study, to capture
all existing behavior preservation approaches that we classify based on several
criteria including their methodology, applicability, and their degree of automa-
tion.
Results: The results indicate that several behavior preservation approaches
have been proposed in the literature. The approaches vary between using for-
malisms and techniques, developing automatic refactoring safety tools, and per-
forming a manual analysis of the source code.
Conclusion: Our taxonomy reveals that there exist some types of refactoring
operations whose behavior preservation is under-researched. Our classification
also indicates that several possible strategies can be combined to better detect
any violation of the program semantics.

Keywords: refactoring, behavior preservation, systematic mapping study

∗Corresponding author
Email addresses: eman.alomar@mail.rit.edu (Eman Abdullah AlOmar),

mwmvse@rit.edu (Mohamed Wiem Mkaouer), cdnvse@rit.edu (Christian Newman),
ali.ouni@etsmtl.ca (Ali Ouni)

Preprint submitted to Journal of LATEX Templates July 21, 2021

1. Introduction

Software maintenance and evolution is an essential activity for any software
system and the success of a system measures by its ability to maintain a high
quality of design in the face of continuous changes. Because the change to the
code base is inevitable, mechanisms must be employed in order to avoid caus-5

ing deterioration to its integrity. One of the key mechanisms to cope with this
challenge is refactoring. Refactoring is the process of optimizing the internal
structure of the code without changing its external behavior. With the exis-
tence of many refactoring techniques, developers are still reluctant to rely on
refactoring frameworks, and they prefer to refactor their code manually [1, 2].10

Surveys have revealed developer’s lack of trust in automatic refactoring [3], due
to the fear of breaking the code semantics and introducing bugs. Although
refactoring, by definition, guarantees the safety and preservation of the refac-
tored system’s functionality, its adoption is still limited. One way to narrow
the gap between refactoring and its adoption, is to highlight the existing effort15

in securing the execution of refactoring operations. However, little is known
about how existing verification techniques allow such variety of changes, which
vary from renaming methods and attributes, to extracting classes and merging
packages, to be executed without altering the software’s functionality. Thus,
There is a lack of comprehensive studies to keep researchers and practitioners20

up-to-date with the status of research in preserving the behavior, evaluating the
correctness of the transformation, and whether or not these approaches lead to
a safe and trustworthy refactoring.

While refactoring has been the focus on several SLRs, these studies have
mainly focused on identifying refactoring opportunities, through the identifica-25

tion of code smells, as a detection step, and on recommending the appropriate
refactoring operations, as a correction step. Our work is different from these
papers since our SLM primarily focuses on collecting and summarizing all the
behavior preservation techniques in all areas of software refactoring. It is not
limited to design-based approaches; it also covers code-based behavior preserva-30

tion approaches. To the best of our knowledge, no previous work has conducted
a comprehensive SLM pertaining to behavior preservation techniques in software
refactoring.

The goal of this paper is to report an SLM that (1) identifies behavior
preservation approaches in the research literature, and (2) identifies open is-35

sues in existing research. The outcomes of this SLM can serve as summarizing
indexes and are expected to (1) assist researchers to identify related behavior
preservation topics that are not well explored, and (2) guide practitioners to
know the existing techniques for behavior preservation, which have an impact
on refactoring decisions made in practice.40

To conduct this systematic mapping study, we followed established guide-
lines for SLR and SLM studies in SE [4, 5, 6]. We performed the review by
defining the search string, the search academic article search engine, the selec-
tion criteria, and the research questions. We extracted data for 101 potentially
relevant articles using the search academic article search engine. After careful45

2

screening of these articles, we identified 28 primary studies (PSs). We classified
these PSs based on different perspectives, including the software artifacts and
language paradigms, the refactoring operations, the behavior preservation ap-
proaches, and the evaluation methods considered. We identified several topics
and challenges in need to be addressed in future research.50

2. Background & Related Work

2.1. Behavior preserving transformation
Refactoring is a maintenance task in which the internal structure of the

source code is improved while the external behavior is preserved [7]. The defini-
tion of behavior preservation, originally introduced by Opdyke [8], states that,55

for the same set of input values, the resulting set of output values should be
the same before and after the refactoring. Opdyke supports the notion of be-
havior preservation by specifying refactoring preconditions. An example of a
refactoring precondition can be seen when considering Extract Class refactoring
in which naming conflicts must be avoided. Opdyke defined seven properties60

that must be checked before refactoring programs, which include: (1) unique
superclass, (2) distinct class names, (3) distinct member names, (4) inherited
member variables not redefined, (5) compatible signatures in member function
redefinition, (6) type-safe assignment, and (7) semantically equivalent references
and operations.65

Some refactoring techniques and formalisms to guarantee program preser-
vation have been reported in a survey study by Mens and Tourwe [9]. They
discussed the existing literature in terms of refactoring activities applied and
their techniques, the application of refactoring to any type of software artifacts,
refactoring tool support, and the impact of refactoring on the software process.70

In one of these several refactoring classification aspects, they discussed how the
use of assertions (preconditions, postconditions, and invariants) and the use of
graph transformation could help in guaranteeing behavior preservation. There-
fore, in contrast to this SLM, the previous survey does not cover all of the
approaches to guarantee behavior-preserving transformation. The survey con-75

sidered only a few studies on behavior preservation because of its broader topic
in the area of software refactoring and because it was performed a decade ago.

2.2. Other systematic literature reviews in refactoring
This work is a systematic mapping study in which we studied and summa-

rized the primary studies (PSs) reporting the behavior preservation approach80

in the area of software refactoring. We did not find any SLM discussing the be-
havior preservation strategies. However, we reviewed a number of existing SLRs
because of the similarities between those works and ours in terms of research
setting. Table 1 summarizes the SLRs cited in this study.

Zhang et al. [10] conducted an SLR of 39 studies in the field of bad code85

smells. They discussed these studies based on the following: the goals of the

3

Table 1: Refactoring-related SLRs in Related Work.

Study Year Focus No. of PSs
Zhang et al. [10] 2011 Bad smells & refactoring 39
Abebe and Yoo [11] 2014 Trends, opportunities & challenges of software refactoring 58
Misbhauddin and Alshayeb [12] 2015 UML model refactoring 94
AlDallal [13] 2015 Refactoring opportunities identification 47
Singh and Kaur [14] 2017 Refactoring opportunities identification 238
AlDallal and Abdin [15] 2017 Impact of refactoring on quality 76
Mariani and Vergilio [16] 2017 Search-based refactoring 71
Baqais and Alshayeb [17] 2020 Automatic refactoring 41

studies, type of code smells addressed, the approaches to studying code smells,
and identifying bad smells and refactoring opportunities.

In a systematic review reported by Abebe and Yoo [11], 58 studies were
reviewed with the intention of revealing the trends, opportunities, and challenges90

of software refactoring. Their classification helped guide researchers to address
the crucial issues in the field of software refactoring.

Misbhauddin and Alshayeb [12] performed an SLR in the area of refactoring
UML models. They analyzed and classified 94 PSs based on several criteria:
UML types of models, the formalisms used, and the effect of refactoring on model95

quality. In part of the research, they listed a few model behavior specification
approaches. Our SLM is not limited to design-based approaches; it also covers
code-based behavior preservation approaches.

AlDallal [13] conducted an SLR of 47 PSs published on identifying refactor-
ing opportunities in object-oriented code. AlDallal’s review classified PSs based100

on the considered refactoring scenarios, the approaches to determine refactoring
candidates, and the datasets used in the existing empirical studies. In a follow-
ing SLR work by AlDallal and Abdin [15], they discussed 76 PSs and classified
based on refactoring quality attributes of object-oriented code.

Singh and Kaur [14] performed an SLR as an extension of AlDallal’s [13]105

SLR. In their review, they analyzed 238 research items in the field of code smell
detection and its refactoring opportunities with the intention of addressing some
research questions that were left open in AlDallal’s SLR.

More recently, Baqais and Alshayeb [17] conducted a systematic literature
review on automated software refactoring. In their review, they analyzed 41110

studies that propose or develop different automatic refactoring approaches.
In the area of search-based refactoring, Mariani and Vergilio [16] system-

atically reviewed 71 studies and classified them based on the main elements
of search-based refactoring, including artifacts used, encoding and algorithms
used, search technique, metrics addressed, available tools, and conducted evalu-115

ation. Within the field of search-based refactoring, Mariani and Vergilio classi-
fied the selected PSs into five general categories related to behavior preservation
methods. These categories involved: (1) Opdyke’s function [8], (2) Cinnéide’s
function [18], (3) domain-specific, (4) no evidence of behavior preservation, and
(5) do not mention the method. The current SLM does not overlap Mariani and120

Vergilio’s SLR because this SLM entirely focuses on behavior preservation trans-

4

formation in all areas of software refactoring, whereas Mariani and Vergilio’s
SLR mainly focused on search-based refactoring and discussed partially general
behavior preservation methods.

As shown in Table 1, all the above-mentioned studies focus on either (1) de-125

tecting refactoring opportunities, through the optimization of structural metrics,
or the identification of design and code defects, or (2) automating the gener-
ation and recommendation of the most optimal set of refactorings to improve
the system’s design while minimizing the refactoring effort, so that developers
still can recognize their own design. Our work is different from these papers130

since our SLM primarily focuses on collecting and summarizing all of the be-
havior preservation techniques in all areas of software refactoring. It is not
limited to design-based approaches; it also covers code-based behavior preserva-
tion approaches. To the best of our knowledge, no previous work has conducted
a comprehensive SLM pertaining behavior preservation techniques in software135

refactoring.

3. Research Method

Figure 1: Literature Search Process.

This SLM aggregates and summarizes the approaches in the field of testing
behavior preservation in software refactoring. Based on the established guide-
lines [4, 5, 6], we performed the SLM in three main phases: planning, conducting,140

and reporting the review. Creating a protocol is a major step when conduct-
ing an SLM [4]. This protocol contains the research questions, search strategy,
study selection including inclusion and exclusion criteria, and data extraction
and analysis to answer research questions.

The core motivation behind carrying out this SLM is to:145

• Identify behavior preservation approaches in research literature.

• Identify open issues in existing research.

5

3.1. Research questions
Since little is known about the literature review of behavior preservation,

this SLM serves as an exploration of this topic to extract existing techniques,150

currently being used, and their associated programming languages. The analysis
of such wide variety of methods leads to develop a categorization and reveals
areas of potential improvements. Therefore, we follow criteria defined in [4, 5,
6]when defining our research questions. The motivation behind each question is
described below.155

3.1.1. RQ1: What types of software artifacts and language paradigms were cov-
ered in the PSs to examine behavior preservation?

The first research question explores the types of system levels and their
language paradigms considered in the PSs, and to know what software artifacts
are mostly used in the literature.160

3.1.2. RQ2: What refactoring types were considered in the PSs?
Research question two identifies the refactoring operations that are tested

and evaluated by behavior-preserving transformation approaches. This RQ
serves as a popularity context to reveal the most and least popular refactoring
types. Yet, the popularity in the context of behavior preservation is an indica-165

tor for refactoring complexity, as a code transformation, and thus, it potential
proneness to errors.

3.1.3. RQ3: What approaches were considered by the PSs to test the behavior-
preserving transformations in software refactoring?

We pose this research question to study current approaches for testing be-170

havior preservation of refactoring, and to get an overview of what different
criteria are addressed by the existing methods. Accordingly, we collect informa-
tion about refactoring techniques, automated analyses, and the manual analysis
approach. Lastly, we check if the proposed approach is compared with existing
methods, and study the pros and cons of the current approaches to suggest areas175

for improvement.

3.1.4. RQ4: What evaluation methods were used in the PSs to assess the pro-
posed behavior preservation approaches?

We answer this research question by investigating how researchers evaluate
and validate their proposed approaches in practice, when checking the relia-180

bility of the obtained conclusions. The answer to this question enumerates all
evaluation methods that are found to be appropriate and most reliable when
validating behavior preservation approaches.

6

3.2. Search strategy185

To find relevant studies, we performed an automatic search in Google Scholar
and Scopus 1. These search engines cover all main venues (e.g., IEEE, ACM,
Springer). Our search string in these search engines was:

((behavior-preserving OR behavior preserving OR behavior
preservation OR behaviour-preserving OR behaviour pre-
serving OR behaviour preservation OR preserv* behavior
OR preserv* behaviour) AND (formal OR method OR ap-
proach) AND (refactor* OR restructur*))

TextBox 1: Search String.

The strategy to construct search keywords was as follows:

• Derive the main terms from research questions and terms considered in190

the relevant papers.

• Include alternative spellings for major terms.

• Combine possible synonyms and spellings of the main terms using the
Boolean OR operators, and then combine the main terms using the Boolean
AND operators.195

These search keywords are applied to paper titles, abstracts, and keywords.
To check the validity of the search string, we manually double check a few
articles. Similar to [19], to restrict the search space when using Google Scholar
to execute search string, we checked first several pages because we noticed that
relevant studies appear in the first few pages. The process of determining the200

final list of PSs is depicted in Figure 1.

3.3. Study selection
To collect the PSs, we adapted the search process of [15] and conducted a

four phased process.

3.3.1. Stage 1205

In this first stage of the paper selection process, given in Figure 1, we
searched the academic article search engine for potentially related articles. Our
criteria included applying our predefined search string against a publication’s
title, abstract, and keyword fields. Results from this search were not limited
to specific venues. Searching the Google Scholar and Scopus resulted in a total210

of 101 literature publications. To reduce the possibility of including totally ir-
relevant articles, we performed the initial screening of the articles. Literature

1www.scopus.com

7

publications were then eliminated based on the defined inclusion and exclusion
criteria to filter our irrelevant articles gathered in Stage 1.

Inclusion criteria:215

The selected studies must satisfy all the following inclusion criteria:

• The article must be published in a peer-reviewed journal or conference
before March 1, 2021.

• The article must report an approach to testing behavior preservation and
verify the correctness of refactorings.220

Exclusion criteria:
Papers are excluded if satisfying any of the exclusion criteria, as follows:

• The study did not report an approach to test behavior-preserving trans-
formations in software refactorings.

• The study is a positioning paper, abstract, editorial, keynote, tutorial, or225

panel discussions.

• The study is not written in English

Regarding the second inclusion criteria, we only considered PSs that reported
an approach to test the behavior preservation in refactoring, so we excluded any
other articles that provided broad explanation about the concept of behavior230

preservation. Additionally, we excluded articles that were short because of their
lack of comprehensiveness, e.g., [20].

3.3.2. Stage 2
This stage involved an elimination of studies that were returned by the

academic article search engine on the basis of the titles and abstracts of the235

potentially relevant articles. It is important to consider the abstracts in this
stage because the titles of some articles could be misleading. The inclusion
and exclusion rules were applied at this stage to all retrieved studies. This
elimination process reduced our result set to 49 literature publications.

3.3.3. Stage 3240

To obtain the relevant PSs, the complete literature publication was read
and reviewed. Literature publications were eliminated based on the defined
exclusion and inclusion rules. This process resulted in a total of 28 literature
publications that were accepted for this study.

3.3.4. Stage 4245

To maximize the search coverage of all relevant papers, we conducted the
snowballing technique [5] on papers already in the pool. It resulted in adding 3
additional papers, increasing the pool size to 28.

8

3.4. Data extraction
In order to determine the attribute(s) of the classification dimension, we250

screened the full texts of the PSs and identified the attribute(s) of that dimen-
sion. We used attribute(s) generalization and refinement to derive the final map,
similar to [19]. After the extraction of the classification dimension, we read the
selected PSs in detail to answer the research questions. We then extracted the
standard information from each paper, similar to [21], and included the addi-255

tional attributes relevant to our study to the form. The data extraction form
used is shown in Table 2.

Data stored in [F1] to [F11] are for documentation purposes, whereas data
in [F12] to [F21] are for the purpose of data analysis. This form enables us to
report the details needed for the PSs in this SLM.260

Table 2: Data Extraction Form.

No. Field Additional comments
F1 Primary study ID N/A
F2 Author(s) N/A
F3 Title N/A
F4 Source N/A
F5 Keyword N/A
F6 Publication venue N/A
F7 Type of publication N/A
F8 Date of publication N/A
F9 Publication details for journal N/A
F10 Citation count (Google Scholar) N/A
F11 Page numbers N/A
F12 Approach Method used to ensure behavior preservation
F13 Approach Subcategory A subcategory of each approach
F14 Strategy A specific strategy used for that method to ensure behavior preservation
F15 Artifacts System levels refactoring
F16 Language Paradigm A classification of software artifacts based on their features (if available)
F17 Refactorings List of refactoring scenarios
F18 Refactoring Classification A classification for each refactoring operation
F19 Evaluation Methods A method used to validate and evaluate the proposed approach
F20 Strength A brief description of method’s strengths
F21 Limitation A brief description of method’s limitations

4. Results

4.1. Overview of the PSs
The research method discussed in Section 3 resulted in 28 relevant PSs listed

in Appendix A. The main venues for these relevant PSs are presented in Ta-
ble 3. The PSs were published in 18 different sources including journals and265

conferences. The list includes eleven journals and eleven conferences. The first
relevant article discusses an approach of behavior preservation published in a
journal in 1997, whereas the most recent one was published in 2018. The num-
ber of literature publication published in journals and conferences individually
and combined are presented in Figure 2.270

Except for [22], all the authors of the PSs are from academia. The authors
of [22] are from industry. This indicates that most of the studies in this area
were performed within an academic environment.

9

Table 4 shows an overview of the most-cited articles which indicate the degree
of the most impactful PSs.275

Table 3: Publication Sources.

Study Year Venue Source
Roberts et al. [23] 1997 Journal Theory and Practice of Object Systems (TAPOS)
Mens et al. [24] 2003 Journal Journal of Software Maintenance and Evolution (SME)
Tip et al. [22] 2003 Conference Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
Garrido and Meseguer [25] 2006 Conference International Workshop on Source Code Analysis and Manipulation (SCAM)
Straeten et al. [26] 2007 Journal Software and System Modeling (SSM)
Massoni et al. [27] 2008 Conference Fundamental Approaches to Software Engineering (FASE)
Soares et al. [28] 2009 Conference Brazilian Symposium on Software Engineering (SBES)
Ubayashi et al. [29] 2008 Conference International Conference on Software Testing, Verification, and Validation (ICST)
Schäfer et al. [30] 2008 Conference Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
Soares et al. [31] 2009 Conference Brazilian Symposium on Programming Languages (SBLP)
Tsantalis and Chatzigeorgiou [32] 2009 Journal IEEE Transactions on Software Engineering (TSE)
Schäfer and Moor [33] 2010 Conference Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
Soares et al. [34] 2010 Journal IEEE Software
Tsantalis and Chatzigeorgiou [35] 2010 Journal Journal of Systems and Software (JSS)
Tip et al. [36] 2011 Journal Transactions on Programming Languages and Systems (TOPLAS)
Soares et al. [37] 2011 Conference Brazilian Symposium on Programming Languages (SBLP)
Overbey and Johnson [38] 2011 Conference International Conference on Automated Software Engineering (ASE)
Soares et al. [39] 2011 Conference International Conference on Software Maintenance and Evolution (ICSME)
Soares et al. [40] 2013 Journal Journal of Systems and Software (JSS)
Jonge and Visser [41] 2012 Conference Workshop on Language Description (WLD)
Noguera et al. [42] 2012 Conference International Conference on Software Maintenance and Evolution (ICSME)
Thies and Bodden [43] 2012 Conference International Symposium on Software Testing and Analysis (ISSTA)
Mongiovi et al. [44] 2014 Journal Science of Computer Programming (SCP)
Najaf et al. [45] 2016 Journal Computing and Informatics (CI)
Horpácsi et al. [46] 2017 Conference Verification and Program Transformation (VPT)
Mongiovi et al. [47] 2017 Journal IEEE Transactions on Software Engineering (TSE)
Chen et al. [48] 2018 Journal Information and Software Technology (IST)
Insa et al. [49] 2018 Journal Scientific Programming (SP)

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0

2

4

6

8

10

Year

N
o.

of
PS

s

of conference PSs
of journal PSs

of all PSs

Figure 2: Distribution of Primary Studies by Year.

4.2. RQ1: What types of software artifacts and language paradigms were covered
in the PSs to examine behavior preservation?

Table 5 presents the types of software artifacts, different language paradigms
and programming and modeling languages used in the PSs. Refactoring is ap-
plied to only two kinds of artifacts in the literature: code and model. Code280

10

Table 4: Citation Count (Obtained from Google Scholar).

Study Year Source Count
Roberts et al. [23] 1997 TAPOS 550
Tsantalis & Chatzigeorgiou [32] 2009 TSE 316
Mens et al. [24] 2003 SME 206
Tip et al. [22] 2003 OOPSLA 181
Soares et al. [34] 2010 IEEE Software 122
Schäfer & Moor [33] 2010 OOPSLA 104
Schäfer et al. [30] 2008 OOPSLA 103
Tip et al. [36] 2011 Journal 74
Straeten et al. [26] 2007 SSM 64
Tsantalis & Chatzigeorgiou [35] 2010 JSS 59
Garrido & Meseguer [25] 2006 SCAM 49
Soares et al. [40] 2013 JSS 37
Overbey & Johnson [38] 2011 ASE 33
Mongiovi et al. [44] 2014 SCP 31
Soares et al. [39] 2011 ICSME 29
Thies and Bodden [43] 2012 ISSTA 23
Massoni et al. [27] 2008 FASE 21

refactoring targets to apply refactoring techniques at the source code level.
Model refactoring aims to apply refactorings at model level as opposed to the
source code. Most (82.75%) of the PSs were about refactored source code, and
a few (17.24%) concerning refactored design models. Articles optimizing code
are primarily focused on Java programming language. Few articles, however,285

used C++, Smalltalk, AspectJ, Fortran, PHP, BC, Erlang, Stratego, Mobl, and
XML to test behavior preservation. For model refactoring, research deals with
Alloy specification language or UML models. As can be seen from the table,
most of the papers consider refactoring source code, focusing primarily on the
Java language. Model refactoring is being used by few articles. Moreover, one of290

the articles [24] does not explicitly mention what types of artifacts were refac-
tored. By analyzing the PS [24], it is possible to guess that it is applicable
to either code or models since the behavior preservation approach described is
about graph transformation.

The focus on Java language might be because of the popularity of Java,295

and refactoring examples in Fowler’s book are written in Java. Researchers are
encouraged to focus on different languages and apply more refactoring to design
models when testing behavior preservation.

Table 5: Software Artifacts and its Language Paradigms.

Software Artifact Language Paradigm Language PSs

Code

Class-based OO Java [44][28][31][34][32][25][22][39][47][40]
[48] [43] [35] [41] [42] [36] [33] [30] [36]

C++ [32]
Smalltalk [23]

Aspect-oriented AspectJ [44] [37] [29] [42] [30]
Imperative Fortran, PHP, BC [38]
Functional Erlang [46] [49]
Domain-specific Stratego, Mobl [41]
Markup XML [42]

Model Structural & Behavioral UML [26] [45]
Structural formal Alloy [27]

11

Summary. Refactoring studies cover mainly two levels of artifacts:
Source code and model. Source code artifacts are the main focus of
refactoring literature. Java is the most popular programming language
in these studies.

4.3. RQ2: What refactoring types were considered in the PSs?300

As shown in Table 6 and Table 7, the literature publications addressed 150
distinct refactoring operations. In this SLM, we classify refactoring operations
considered in the PSs into three categories: Fowler’s catalog, Model refactor-
ings, and Language-specific refactorings. Refactorings proposed by Fowler fall
into the first category (23 PSs), refactoring scenarios applied in design model305

fall into the second category (3 PSs), and the third category is assigned to
refactorings that were applied by specific programming languages involved in
the PS (14 PSs). It is important to note that some studies used refactoring
operations that belong to two categories. 43 out of 150 refactoring activities
were cataloged by Fowler [7] and serve different purposes: composing methods,310

organizing data, simplifying conditional expressions and method calls, dealing
with generalization, and moving features between objects. The other refactor-
ings are either model refactorings or language-specific associated with model or
source code artifacts.

As can be observed in Figure 3, some of the refactoring scenarios were studied315

more frequently than others. The TOP 3 most studied refactoring types are Pull
Up Method, Rename Method, and Push Down Method.

Interestingly, while it is expected that PSs opt for popular refactorings, to
guarantee their correctness, recent studies that have been mining refactorings
[50, 51, 52, 53] have shown that Pull Up Method, and Push Down Method are320

among the least used refactorings in practice. We observe that the behavior can
be preserved under less or very restrictive conditions depending on the nature of
refactoring types. For example, when a class member (method or field) is moved
up or down an inheritance hierarchy, or when it is required after the refactoring
to have all references to the same variables and methods defined in the same class325

as before the refactoring as it seems these refactoring operations are the ones
that most likely to introduce behavior changes. Pull Up Method, and Push Down
Method are defined as the intention of moving identical methods or attributes,
spread in subclasses, up into a superclass, or vice versa, respectively. These
refactorings seem to be attractive for researchers to analyze, saying they can be330

highly useful when removing duplicate code, extracting reusable components,
or implementing design patterns. Yet, since they impact several interconnected
classes through hierarchies, it is critical to guarantee the refactoring execution
correctness. However, developers are found to be rarely performing these types
of refactorings through the IDE, instead, it is most likely that they manually335

move whatever member across hierarchies, and manually fix any unexpected
errors that it may cause.

12

Summary. A variety of refactoring operations have been used in the
literature. These refactorings can be classified into three categories:
Fowlers catalog, model refactorings, and language-specific refactorings.
When testing the proposed behavior preservation approaches by PSs, we
observe that some refactoring types such as Pull Up Method, Rename
Method, and Push Down Method were studied more frequently than oth-
ers. The high interest in these refactoring operations in primary studies
may indicate their importance in preserving the behavior.

0 2 4 6 8 10 12

Pull Up Method

Push Down Method

Rename Method

Rename Class

Rename Field

Pull Up Field

Encapsulate Field

Extract Method

Move Method

Add Parameter

Push Down Field

Inline Method

Add Method

Remove Method

Extract Class

Rename Intertype Declaration

12

11

10

9

9

6

5

4

4

3

3

3

3

2

2

2

No. of PSs

R
ef

ac
to

rin
g

O
pe

ra
tio

n

Figure 3: Distribution of Most Used Refactoring Operations.

4.4. RQ3: What approaches were considered by the PSs to test the behavior-
preserving transformations in software refactoring?340

As discussed in RQ1 and RQ2, refactoring is not restricted to software code,
but it also applies to model. Concerning refactoring types used to preserve the

13

Table 6: Refactorings Identified by Primary Studies and their Classification Schema.

Refactorings
Classification

Fowler’s catalog Model refactorings Language-specific refactorings
Encapsulate Field ✓
Pull Up Method ✓
Push Down Method ✓
Pull Up Field ✓
Rename Temporary ✓
Move States into Orthogonal Composite State ✓
Flatten States ✓
Add Subclass ✓
Introduce Signature ✓
Introduce Generalization ✓
Introduce Subsignature ✓
Introduce Relation ✓
Remove Optional Relation ✓
Remove Scalar Relation ✓
Split Relation ✓
Rename Class ✓
Rename Field ✓
Rename Local Variable ✓
Rename Method ✓
Extract Method ✓
Extract Class ✓
Move Class ✓
Change Method Signature ✓
Move Method ✓
Rename ✓
Move ✓
Introduce USE ✓
Change Function Signature ✓
Introduce Implicit None ✓
Add Empty Subprogram ✓
Safe Delete ✓
Copy Up Method ✓
Extract Local Variable ✓
Add Local Variable ✓
Introduce Block ✓
Insert Assignment ✓
Move Expression ✓
Extract Function ✓
Add Empty Function ✓
Populate Function ✓
Replace Expression ✓
Push Down Field ✓
Rename Type ✓
Replace Code with Method Call ✓
Move Operation to Listener ✓
Remove Unused Variable ✓
Change Instance Access to Static ✓
Remove Immutable Object Copy ✓
Replace Direct Access with Getter ✓
Replace Instance with isInstance ✓
Remove Parameter ✓
Replace Field with Method ✓
Decrease Method Visibility ✓
Replace Direct Access with Setter ✓
Inline Temp ✓
Consolidate Duplicate Code Fragment ✓
Rename Constant ✓
Rename Local Variable ✓
Replace Generic Cast with classCast ✓
Replace Generic Cast with isInstance ✓
Replace Method with Method Object ✓
Change Statement Order ✓
Swap Access Method ✓
Remove Duplicate Assignment ✓
Consolidate Conditional Expression ✓
Introduce Explaining Variable ✓
Remove Assignment to Parameters ✓
Increase Method Visibility ✓
Replace if with Switch ✓
Replace Equivalent Method Call ✓
Introduce Null Object ✓
Replace Magic Number with Constant ✓
Wrap (Change) Expression ✓

14

Table 7: Refactorings Identified by Primary Studies and their Classification Schema (Cont’d).

Refactorings
Classification

Fowler’s catalog Model refactorings Language-specific refactorings
Extract to Function ✓
Extract to Variable ✓
Outer Variable ✓
Variable to Function Parameter ✓
Rename Function ✓
Add Method ✓
Remove Method ✓
Change Method Body ✓
Change Method Modifier ✓
Add Field ✓
Remove Field ✓
Change Field Modifier ✓
Change Field Initializer ✓
Change Static Field Initializer ✓
Rename Intertype Declaration ✓
Inline Method ✓
Extract Exception Handler ✓
Infer Generic Type ✓
Replace Deprecated Code ✓
Extract Interface ✓
Extract Subclass ✓
Generalize Type ✓
Add Variable ✓
Create Accessors for a Variable ✓
Change all Variable refs to Accessors Calls ✓
Remove Class ✓
Move Method across Object Boundry ✓
Extract Code as Method ✓
Change Abstract Class to Interface ✓
Extract Feature into Aspect ✓
Extract Fragment into Advice ✓
Extract Inner Class to Standalone ✓
Inline Class within Aspect ✓
Inline Interface within Aspect ✓
Move Field from Class to Inter-type ✓
Move Method from Class to Inter-type ✓
Replace Implements with Declare Parents ✓
Split Abstract Class into Aspect and Interface ✓
Extend Marker Interface with Signature ✓
Generalize Target Type with Marker Interface ✓
Introduce Aspect Protection ✓
Replace Inter-type Field with Aspect Map ✓
Inter-type Method with AspectMethod ✓
Tidy Up Internal Aspect Structure ✓
Extract Superaspect ✓
Pull Up Advice ✓
Pull Up Declare Parents ✓
Pull Up Inter-type Declaration ✓
Pull Up Marker Interface ✓
Pull Up Pointcut ✓
Push Down Advice ✓
Push Down Declare Parents ✓
Down Inter-type Declaration ✓
Push Down Marker Interface ✓
Push Down Pointcut ✓
Conditional with Polymorphism ✓
Rename Package ✓
Move Type ✓
Extract Superclass ✓
Add Parameter ✓
Extract & Move Method ✓
Extract & Pull Up Method ✓
Move & Rename Method ✓
Move Member Type To Toplevel ✓
Move Member ✓
Move Inner To Toplevel ✓
Convert Anonymous To Nested ✓
Move Instance Method ✓
Extract Constant ✓
Extract Temp ✓
Inline Constant ✓
Introduce Factory ✓
Introduce Indirection ✓
Introduce Parameter ✓
Introduce Parameter Object ✓
Promote Temp To Field ✓

15

behavior, PSs used a variety of refactoring operations. However, as seen from
Figure 3, a number of refactoring operations receive considerable attention due
to the fact that these are most likely introduce behavioral changes. Considering345

the types of software artifacts and refactoring operations used in the PSs, we
report, in this section, several approaches for testing behavior preservation of
refactoring.

All of the accepted literature publications have reported an approach to
preserving the behavior. The approaches vary between using formalisms, ap-350

plying techniques, developing automatic refactoring safety tools, and perform-
ing a manual analysis of the source code. We decided to cluster these ap-
proaches as follows: (1) refactoring formalisms and techniques, (2) automated
analyses, and (3) manual analysis. Formalism and technique is any behavior
preservation approach proposed using a technique or specification. It is not355

necessarily to be incorporated with a refactoring engine. Automated analy-
sis is any behavior preservation approach that is proposed by incorporating it
with a refactoring engine to automate the process. Additionally, we classify
the reported approaches into fourteen subcategories. The designed schema for
classifying these approaches is depicted in Figure 4. We consider the three360

already-mentioned classifications as a starting point of the schema, and then
classify the reported approaches to each of these classifications. Each PS can
belong to one or more subcategories. A detailed overview of these classifica-
tions is shown in Table 8. Figures 5 and 6 depict refactoring operations that are
overlapped between multiple strategies. Due to the space constraints, we only365

show the popular refactoring operations used in the literature, namely, Pull up,
Push down, Extract, Move, Rename, Inline, and Encapsulate Field. As can be
seen, these popular refactorings are evaluated using multiple strategies. More
details about the overlapped refactorings can be found in our extension package
2. Detailed descriptions of the approaches are described below.370

4.4.1. Refactoring Formalisms and Techniques
This section demonstrates an example that shows some aspects of the For-

malisms and Techniques behavior preservation approach. Consider the class
Employee and its subclass Salesman. Class Employee declares the getName,
getSalary, yearlySalary methods, and Class Salesman declares methods setSSN,375

getSSN, getFullName, getSalary, getSomething, toString, yearlySalary,
yearlySalaryIncrease, displayYearlySalaryIncrease, test1, and test2.
Suppose we use generalization-related refactorings (i.e., Pull Up Attribute and
Pull Up Method) to demonstrate this approach. In that case, we notice that
one of the strategies listed in Table 8 (i.e., preconditions) needs to be checked380

before performing refactoring, as follows:

• Methods setSSN, getSSN, and field ssn can be pulled up from class Salesman
into class Employee without affecting program behavior.

2https://smilevo.github.io/self-affirmed-refactoring/

16

Figure 4: Behavior Preservation Approaches.

• Method yearlySalary cannot be pulled up into class Employee because
class Employee has a method with the same signature defined.385

• If method toString is pulled up into superclass, there is no compilation
error introduced but the program is behaviorally changed. This is because
the call s.toString() dispatches to a different implementation of the
method toString().

• Method displayYearlySalaryIncrease cannot be pulled up without pulling390

up yearlySalaryIncrease() because yearlySalaryIncrease() is not
declared in class Employee.

Some aspects of refactoring formalisms and techniques include displaying
the violation of refactoring preconditions. For instance, refactoring tools that
display violations should: (1) not take longer than a manual refactoring, (2)395

indicate all locations of precondition violation, (3) show violated preconditions
at once, and (4) display the violation relationally.

4.4.1.1. Graph Transformation. Existing refactoring tools lack solid specifica-
tion of the refactoring procedures. Current specifications are defined by exam-
ples or by including assertions (pre/postconditions) that are mostly language-400

specific. To increase the reliability of these tools, a formal model is required

17

(a
)

P
ul

l
up

-r
el

at
ed

O
pe

ra
ti

on
s

(b
)

P
us

h
D

ow
n-

re
la

te
d

O
pe

ra
ti

on
s

(c
)

E
xt

ra
ct

-r
el

at
ed

O
pe

ra
ti

on
s

(d
)

M
ov

e-
re

la
te

d
O

pe
ra

ti
on

s

F
ig

ur
e

5:
B

eh
av

io
r

P
re

se
rv

at
io

n
St

ra
te

gi
es

an
d

th
e

E
va

lu
at

ed
R

ef
ac

to
ri

ng
O

pe
ra

ti
on

s.

18

(a
)

R
en

am
e-

re
la

te
d

O
pe

ra
ti

on
s

(b
)

In
lin

e-
re

la
te

d
O

pe
ra

ti
on

s

(c
)

E
nc

ap
su

la
te

F
ie

ld
-r

el
at

ed
O

pe
ra

ti
on

s

F
ig

ur
e

6:
B

eh
av

io
r

P
re

se
rv

at
io

n
St

ra
te

gi
es

an
d

th
e

E
va

lu
at

ed
R

ef
ac

to
ri

ng
O

pe
ra

ti
on

s
(C

on
t)

.

19

Table 8: Behavior Preservation Approaches and its Strategies in Related Work.

Study Year Approach Strategy
Roberts et al. [23] 1997 Refactoring Safety Tool Precondition Checking
Mens et al. [24] 2003 Graph Transformation Graph Rewriting Rules & Expressions
Tip et al. [22] [36] 2003,2011 Type Constraints Constraint Rules
Garrido and Meseguer [25] 2006 Formal Specification & Verification Rewriting Logic
Straeten et al. [26] 2007 Model Transformation Description Logic
Massoni et al. [27] 2008 Model Transformation Laws of Programming
Soares et al. [28] [31] [34][37] 2009,2010,2011 Refactoring Safety Tool Test Suite Generation
Ubayashi et al. [29] 2008 Contract-based Verification Contract Writing Language
Schäfer et al. [30] 2008 Naming Binding Preservation Invariant-based
Tsantalis and Chatzigeorgiou [32] 2009 Precondition Examination Precondition Checking
Schäfer and Moor [33] 2010 Specification-based Refactoring Dependency Preservation

Language Extension
Microrefactorings

Tsantalis and Chatzigeorgiou [35] 2010 Refactoring Safety Tool Precondition Checking
Overbey and Johnson [38] 2011 Differential Precondition Checking Preservation Analysis Algorithm
Soares et al. [39], Mongiovi et al. [47] 2011,2017 Overly Strong Preconditions Identification Differential Testing

Disabling Preconditions
Jonge and Visser [41] 2012 Name Binding Preservation Invariant-based
Noguera et al. [42] 2012 Refactoring Safety Tool Annotation-aware
Thies and Bodden [43] 2012 Refactoring Safety Tool Reflective Calls
Soares et al. [40] 2013 Refactoring Safety Tool Test Suite Generation

Commit Message Analysis Keywords-based Search
Manual Analysis Source Code Comparison

Soares et al. [28], Mongiovi et al. [44] 2009,2014 Refactoring Safety Tool Change Impact Analysis
Najaf et al. [45] 2016 Annealing & Introduce Subtyping UML-B Refactoring Rules
Horpácsi et al. [46] 2017 Decomposition & Schemes Strategic Term Rewriting Rules
Chen et al. [48] 2018 Refactoring Safety Tool Test Suite Generation
Insa et al. [49] 2018 Refactoring Safety Tool Test Suite Generation

to support software refactoring which can be expressed by a graph transforma-
tion. These formal models should: be a language-independent representation of
the source code, preserve certain program properties and include formal anal-
ysis of the assertion to ensure the completeness of the specification. Further,405

since refactoring tools represent the source code by abstract syntax tree and any
refactoring activity is supposed to change that graph, there is a need to have
a formal specification for refactoring that corresponds with a number of graph
rewriting rules [24].

In a study survey, Mens and Tourwe [9] summarize these formal properties410

by showing the correspondence between refactoring and graph transformation
as shown in Table 9.

Table 9: Formal Properties of Graph Transformation (Extracted from Mens and Tourwe [9]).

Refactoring Graph Transformation
software artifact graph
refactoring graph production
composite refactoring composition of graph productions
refactoring application graph transformation
refactoring precondition application precondition
refactoring postcondition application postcondition

4.4.1.2. Type Constraints. Tip et al. [22] [36] propose using type constraints
that depend on interprocedural relationships between variable types. A con-

20

straint variable can be one of the following: (1) type of constant, (2) type of415

expression, (3) type of declared method, and (4) type of declared field. To en-
sure the preservation of program behavior, each refactoring should be associated
with a set of preconditions that must be satisfied. Type constraints mechanism
verifies the preconditions and determines the source code that is allowed to be
modified.420

4.4.1.3. Formal Specification and Verification. Due to the lack of accurate spec-
ification of the preconditions and lack of proof of the correctness of the refac-
toring tools, Garrido and Meseguer [25] introduce an equational (rewrite logic)
semantics-based approach that fulfills two essential goals: (1) formally specify-
ing Java refactorings, and (2) proving behavior-preserving of refactorings with425

respect to the language’s formal semantics. The implementation of this ap-
proach is based on the rewrite logic executable semantics of Java refactorings
in Maude language. They show the Maude specification of push down method,
pull up field, and rename temporary Java refactorings along with providing a
mathematical proof of the correctness for two of those refactoring operations.430

They particularly prove that these refactorings preserve the program behavior
with reference to the formal Java semantics.

Consider the formal specification of Pull Up Attribute defined in [25]. By
applying this refactoring operation on field ssn to move the field to the class
Employee, the following preconditions must hold in order for transformation to435

be carried out successfully.

• There is a class named Employee.

• Class Employee has at least one subclass.

• Class Employee does not define the field ssn.

• Subclass of Employee defines the field ssn.440

These preconditions are checked by preconditionsPullUpFieldHold oper-
ation and applied by operation applyPullUpField in the formal specification
listed in [25].

4.4.1.4. Model Transformation.

Model Refactoring and Model Refinement. Straeten et al. [26] dif-445

ferentiate between model refactoring and refinement as follows: model refactor-
ing aims at improving the model structure while preserving its behavior, while
model refinement aims at providing more detail to an existing model. The
main purpose of this formalism is to investigate the relation between the be-
havior inheritance consistency and behavior preserving properties of a refined450

model and a refactored model respectively. These model transformation activi-
ties are used to manipulate models, and are supported by a practical formalism
that detects the behavior consistency between a refined model and a refactored
model. This is achieved by the developed plug-in in a UML CASE tool. These

21

two kinds of model transformation need to be complemented by model incon-455

sistency management to avoid any possibility of inconsistency between models
after the transformation activity. Straeten et al. [26] used reasoning capabili-
ties of descriptive logics (DLs) [54] to detect behavioral inconsistencies during
model refinement and behavioral preservation violation during model refactor-
ing. In other words, they check the behavior inheritance consistency between460

superclass and its subclass and then ensure that this behavior consistency is
preserved between refactored classes in an inheritance hierarchy.

Model-Driven Refactoring. Some of the popular model-driven develop-
ment approaches (e.g. Round-trip Engineering) generate changes to programs
from a model, which requires manual updates, making the evolution costly [27].465

To avoid any manual update activity on the source code, Massoni et al. [27]
propose a formal approach to refactor programs in a model-driven manner in a
semi-automatic way which guarantees behavior preservation of the target pro-
gram. The precondition for applying this approach is to guarantee that the
source code is in conformity with the object model. In this approach, Alloy470

is used as the model transformation system, where each primitive Alloy model
transformation from the catalog is associated with a strategy to refactor the
program. This results in a program consistent with the refactored program (i.e.
behavior preservation). This formal approach is guided by laws of programming
that have been proven to be behavior-preserving.475

Annealing and Introduce Subtyping. Najafi et al. [45] proposed an-
nealing and introduce subtyping rules as refactoring rules which can improve
the design from an abstract specification written in UML-B. These rules are
similar to refactoring rules proposed by Fowler et al. [7]. Annealing adds struc-
ture to a specification by splitting a class into two classes (aiming for more480

fine-grained classes); whereas introducing subtyping establishes a relationship
between classes with many features in common (with the aim of increasing
reusability). The rules are behaviorally preserved as it ensures that any soft-
ware design produced will be correct with respect to the original specification.

4.4.1.5. Differential Precondition Checking. Due to the importance of setting485

preconditions to help guarantee behavior-preserving program transformations
for automated refactorings, Overbey and Johnson [38] propose a technique called
Differential Precondition Checking. This technique has the added advantages of
being language independent and reusable in a library. It checks for preservation
by first analyzing the source code and creating program representation. Before490

validating user input, it constructs a program graph as a semantic model (i.e.
initial model). It then produces a new program representation for the modified
source code for the purpose of checking compilability of the refactored program.
For this new program representation, it also constructs a derivative semantic
model. The following step is to perform preservation analysis by comparing the495

two semantic models. If the differential precondition checker determines that

22

the transformation is behavior preserving, the modification will be applied to
the source code. Otherwise, the refactoring will not be considered.

By way of illustration, Overbey and Johnson [38] show the differences be-
tween the traditional precondition checking and the differential checking for500

Pull Up Method refactoring. For the traditional version, the method needs to
be moved from subclass to its superclass, replacing all occurrences of super-
class with this. Using preservation rule for the differential version, however,
this refactoring is composed of two smaller refactoring operations: (1) Copy Up
Method to move a method to its superclass and replace all occurrences of the505

superclass with this and (2) Delete Overriding Duplicate to delete the original
method from the subclass using the preservation rule in [38].

4.4.1.6. Decomposition and Schemes. Some of the previously built complex
refactoring tools were solidly developed, but not totally accurate in guaran-
teeing the correctness of the transformation these tools implement, which have510

resulted in introducing bugs to the system. In order to solve this problem, Hor-
pácsi et al. [46] propose to decompose complex refactoring transformation into
a series of prime refactorings that can also be expressed as instances of refactor-
ing schemes, and then verified based on formal program semantics. This way,
the transformations become simple and more easily verified.515

4.4.1.7. Overly Strong Precondition Identification. Soares et al. [39] propose
an approach to identify overly strong conditions in refactoring implementations
as these conditions may prevent behavior-preserving transformations. This for-
mal specification helps in guaranteeing program preservation. The process of
checking overly strong conditions begins with an automatic generation of Java520

programs as test inputs using a program generator called JDolly. For each
program generated by JDolly, the same refactoring is applied by using three dif-
ferent refactoring implementations (i.e., Eclipse, JRRT, NetBeans). Then, the
outputs of the refactoring implementations are compared. To evaluate whether
a transformation is behavior-preserving, SafeRefactor is used to identify be-525

havioral changes in transformation. If one implementation rejects the transfor-
mation, and the other implementation accepts it with the conformation from
SafeRefactor tool that it is behaviorally preserved, this is an indication that the
first implementation that rejects the transformation contains an overly strong
condition. This technique is also called Differential Testing (DT) [55].530

For an example of such an overly strong condition, suppose we apply Rename
Method refactoring to rename method getFullName to getName. If we apply
this refactoring using Eclipse, we get the following warning message: Problem
in ’Salesman.java’. The reference to getName will be shadowed by a renamed
declaration. After applying the transformation, the test2 method outputs John535

Smith instead of John. This transformation exposes a behavioral change after
ignoring a warning message. Similarly, NetBeans applies the transformation.

By applying this refactoring using JRRT, however, the transformation pre-
serves behavior. JRRT adds a super access to method getName inside test2
to ensure that the resulting program correctly refactors the source program.540

23

We notice that Eclipse rejects the transformation, and NetBeans and JRRT
apply it with the conformance from SafeRefactor tool that it is behaviorally
preserved. Thus, by comparing the results of Eclipse, JRRT, and NetBeans, it
indicates that Eclipse has an overly strong condition because it rejects useful
behavior preserving transformation.545

In the following study that complements this work, Mongiovi et al. [47]
propose a new technique called Disabling Preconditions (DP) to detect overly
strong preconditions. The process starts with using JDolly as test inputs (Step
1). For each generated program, the refactoring engine is used to apply the
transformations. In Step 2, authors collected the messages reported by the550

refactoring engine about the rejection of certain refactoring transformations.
The next step is to manually inspect the code fragments and its related pre-
condition for the purpose of disabling the execution of the precondition (i.e.,
DP technique). Step 5 involves reapplying the same transformation with a dis-
abled precondition. After ensuring that the refactoring implementation applies555

the transformation and this transformation is behaviorally preserved according
to SafeRefactorImpact, DP technique classifies a precondition as overly strong
precondition.

4.4.1.8. Behavior Preservation Preconditions Examination. Tsantalis and Chatzi-
georgiou [32] propose a methodology to preserve the behavior of the code by560

examining a set of preconditions when applying Move Method refactoring. These
preconditions should be satisfied in order to avoid behavioral changes. Tsantalis
and Chatzigeorgiou [32] formally define a set of auxiliary functions that describe
behavior preservation preconditions as follows:

• A class should not inherit a method having a matching signature with the565

moved method. This action will lead the inherited method to override
causing behavioral changes of the target class and its derived one. The
moved method needs to be renamed to resolve the issue.

• When moving a method, the method should not override an inherited
method. The original method should be kept as delegate to the moved570

method.

• When moving a method, the method should have a valid reference to its
target class. The moved method can have a reference via its parameters
or fields in the original class.

• When moving a method, the method should not be synchronized. Moving575

the synchronized method might cause concurrency issues to the original
class’s objects.

4.4.1.9. Contract-based Verification. Ubayashi et al. [29] proposed the notion
of Refactoring by Contract (RbC) to verify the applied refactoring based on
contracts. The contracts in RbC consist of preconditions (i.e., which conditions580

can be applied), postconditions (i.e., which conditions should be verified after
refactoring), and invariants (i.e., what conditions refactoring should preserve).

24

This contract is described in Contract Writing Language (COW), to describe a
predicate based on first-order logic. Another study by Dao et al. [56] verified
the execution preservation of refactored program which is performed by design585

patterns. The authors proposed consistent rules (i.e., pre/postconditions) to
verify if the execution of the original program and refactored one is preserved
the same constraints in the evolution process.

4.4.1.10. Specification-based Refactoring. Because the precondition-based ap-
proach is hard to maintain, Schäfer and Moor [33] presented an approach that is590

based on the concepts of dependency preservation, language extensions, and mi-
crorefactorings. The authors pointed out that the approach is powerful enough
to provide high-level and precise specifications of many of the refactorings. The
author validated their implementation on Eclipses own extensive test suite.

4.4.1.11. Name Binding Preservation. Since name binding associates identi-595

fiers with program code elements, it forms a semantic concern that should be
preserved by refactorings. Schäfer et al. [30] pointed out the two limitations in
current refactoring tools: (1) too weak preconditions that lead to unsoundness
where names do not bind to the correct declarations after renaming, and (2)
too strong preconditions that prevent renaming of certain programs. The au-600

thors proposed an invariant-based approach for name binding. In another study,
Jonge and Visser [41] focused on the behavior preservation of static name bind-
ings by implementing a name binding preservation criterion that reuses the
name analysis defined in the compiler front-end. This way, even when the lan-
guage evolves, the semantics assumed by the refactoring tool is guaranteed to605

be consistent with the semantics implemented in the compiler.

4.4.2. Automated Analyses
4.4.2.1. Refactoring Safety Tools.

SafeRefactor. With the emerging use of refactoring tools, evidence show
that these tools do not always preserve behavior since they may lead to erroneous610

transformations [34] [28]. In order to avoid such refactoring errors, Soares et al.
[28] developed a tool named SafeRefactor to check refactoring safety. It generally
works by identifying behavioral changes in transformations of sequential Java
programs and then generating a test suite for capturing unexpected behavioral
changes. This process splits into five major sequential steps. After receiving two615

versions of the program as an input, a static analysis detects common methods in
both the source and target programs (step 1). The next step involves generating
unit tests for methods identified in step 1 to pinpoint the incorrectly performed
refactorings. In step 3, the tool executes the generated test suite on the source
program and then runs the same test suite on the target program (step 4). The620

last step validates whether the transformation introduces behavioral changes: If
a test runs successfully in one program and fails in the other, the tool identifies
a behavioral change. Otherwise, no behavioral changes will be detected and the
transformation is behaviorally preserved.

25

SafeRefactorImpact. The SafeRefactor tool has been extended, and in-625

cludes AspectJ support [37], uses change impact analyzer called SAFIRA, and
generates a test suite only for the methods impacted by the transformation
[57, 44]. SafeRefactor was renamed SafeRefactorImpact in [44]. This tool works
by: (1) comparing the original and modified programs to identify entities (meth-
ods) impacted by the change, (2) performing a change impact analysis technique630

for the impacted methods in both program versions identifying methods that
can be behaviourally changed after the transformation, (3) generating a test
suite for the common methods identified in the previous step, (4) executing
the test suite before and after the transformation, and (5) evaluating the re-
sults of the transformation to determine whether the transformation is behavior635

preserving.
Mongiovi et al. compare these tools in [44] with respect to several criteria:

program correctness, performance, number of methods considered for test gen-
eration, change coverage, and relevant tests generated. Their findings show that
the extended tool generates better results.640

Refactoring Browser. Roberts et al. [23] developed a tool called Refac-
toring Browser, which uses a set of preconditions to ensure a safe and a correct
refactoring implementation. This tool was designed solely to automate refac-
torings for the Smalltalk language. The tool is used regression testing to assure
that refactorings indeed do not alter the programs behavior. In order to pre-645

serve the behavior of the program, each refactoring is associated with a reused
set of preconditions that must be checked by the compilation framework in Vi-
sualWorks. For instance, to successfully implement Add Method refactoring, the
method name should not conflict with a method defined in the class.

RefaFlex. Since reflective calls are the threats to the validity of refactor-650

ings, Thies and Bodden [43] proposed RefaFlex Eclipse plugin tool for reflective
Java programs to ensure refactoring safety. The tool used dynamic analysis to
log reflective calls during test runs and then utilized the information to prevent
the execution of refactorings that could alter the program’s behavior.

AnnoRefactoring. During the condition checking phase of the performed655

refactoring, annotations can break the behavior preservation as the annotation’s
restriction can be ignored which no longer guarantee the preservation of the
domain-specific mappings. To address this problem, Noguera et al. [42] de-
veloped an annotation-aware refactoring tool that is integrated with Eclipse to
document the domain dependencies that the annotations introduce. Instead of660

augmenting the refactoring preconditions with the annotation behavior specifi-
cation, the authors implemented the annotation behavior preservation as post-
conditions. Since the refactoring-aware annotation is considered as dependency
preservation problem, checking whether the dependencies were maintained after
refactoring is crucial.665

26

RIT. Chen et al. [48] proposed an Eclipse plugin tool named Refactoring
Investigation and Testing (RIT) in order to validate refactoring changes and
ensure that the changes behave as intended. For each set of identified refactoring
changes, The tool analyzed the original and edited version of the programs, and
then detect tests whose behavior might have been modified by refactoring edits.670

The developed tool helps developers detect refactoring edits responsible for test
failures.

JDeodorant. Tsantalis and Chatzigeorgiou [35] proposed a technique, im-
plemented as an Eclipse plugin, that extracts refactoring suggestions introducing
polymorphism to ensure the behavior preservation based on the examination of675

a set of preconditions. This technique helps with eliminating the state-checking
problem that impacts code quality, and its maintenance requires significant ef-
fort.

SecEr. Insa et al. [49] developed a Sofware Evolution Control for Erlang
(SecEr) tool to automatically obtain a test suite that specifically focused on680

comparing the old and new versions of the code to check the behaviour preser-
vation. Differently from SAFIRA [57, 44] that focused on refactoring as a cause
of the change, SecEr is independent of the cause of the changes, being able to
analyze the effects of any change in the code regardless of its structure. All
the analyses performed by the tool are transparent to the user except that it685

requires user intervention when identifying point of interests in both the old and
the new versions of the program.

4.4.2.2. Commit Message Analysis. One of the approaches to analyze refactor-
ing activity on software repositories is by analyzing commit messages. Ratzinger
[58] and Ratzinger et al. [59] propose this simple and fast approach to detect690

refactoring activity between a pair of program versions to determine whether a
transformation is behavior preserving. They identified refactorings based on a
set of keywords existing in the commit message. In particular, they focus on
the following terms in their search approach: refactor, restruct, clean, not used,
unused, reformat, import, remove, replace, split, reorg, rename, and move.695

Few commit messages containing some of these terms are extracted from the
Hadoop3 project, as illustrated in the following comments:

“1. HADOOP-9805. Refactor RawLocalFileSystem rename for improved
testability. Contributed by Jean-Pierre Matsumoto.”
“2. HDFS-7743. Code cleanup of BlockInfo and rename BlockInfo to Block-700

InfoContiguous. Contributed by Jing Zhao.”

3https://github.com/apache/hadoop

27

4.4.3. Manual Analysis
Murphy-Hill et al. [3] identifies refactoring activities by manually analyzing

and comparing the source code before and after the commit. For example,
to check whether each file before and after the commit preserved behavior,705

evaluators first review the code to understand the syntax and semantic changes
and then use diff tool to help them analyze the transformation. After that, they
classify the code changes as either refactoring (such as Move class or Inline
method) or non-refactoring (such as Add null check). In case of disagreements
on whether the applied refactoring changed the behavior, evaluators discussed710

them until agreement was reached.
Soares et al. [40] compared and evaluated three approaches, namely, man-

ual analysis, commit message, and dynamic analysis (SafeRefactor approach) to
analyze refactorings on open source repositories, in terms of behavioral preser-
vation. They found, in their experiment, that manual analysis shows the best715

results in the comparison and is considered the most reliable approach in de-
tecting behavior-preserving transformations.

Summary. Many behavior preservation approaches have been proposed
in the literature. The approaches vary between using formalisms and
techniques, developing automatic refactoring safety tools, and perform-
ing a manual analysis of the source code. Researchers are biased to-
ward using precondition-based and testing-based approaches although
there are other techniques (e.g., graph-based) that have some potential
and perhaps it is effective for certain problems that have not yet well-
explored. Several possible strategies can be combined to better detect
any violation of the program semantics. Formalism and technique ap-
proaches are mainly precondition-based, graph-based, model-based, and
decomposition-based techniques; automated approaches either rely on
testing, preconditions, or keywords. Manual approach is comparison-
based in which the source code has been compared before and after the
commit.

4.5. RQ4: What evaluation methods were used in the PSs to assess the proposed
behavior preservation approaches?720

Table 10: Evaluation Methods Used by the Primary Studies.

Methods No. of PSs PSs
Comparison-based 5 [38] [40] [44] [47] [49]
Empirical-based 13 [22] [28] [31] [34] [39] [37] [43] [36] [33] [30] [41] [48] [42]
Formal Specification-based 7 [27] [26] [46] [25] [29] [45] [30]
Qualitative-based 1 [32]
Independent assessment-based 2 [32] [35]

Except for [24] and [23], all of the PSs used certain evaluation methods to

28

validate their approach. We identified five different evaluation method cate-
gories. The applied methods include comparing the approach against others
[44][47][38][40] [49], running an experiment in one or more refactoring transfor-
mations [28][31] [34] [39][22] [37] [43] [36] [33] [30] [41] [42], presenting a formal725

specification for correctness of refactorings [27][46] [26] [25] [29] [45] [30], using
qualitative analysis [32] [48], and independent assessment [32] [35]. The authors
of [24] don’t evaluate their approach, but they plan to validate their approach in
the future by the following steps: (1) converting code into a graph, (2) applying
graph transformation approach to the graph, and (3) verifying the preconditions730

for two refactoring operations. Table 10 shows the distribution of the PSs over
the evaluation methods and the descriptions are detailed below.

4.5.1. Comparison-based evaluation
Regarding the first evaluation method, the authors of the PSs compare their

approach to other existing methods. Overbey and Johnson [38] evaluate their735

approach in three refactoring tools from two different perspectives: the ex-
pressivity of the preservation specifications and the performance of differential
precondition checking approach compared to a traditional one. Mongiovi et al.
[44] compare SafeRefactorImpact with SafeRefactor in terms of the similarity
of the detected behavioral changes, total time to evaluate the transformation,740

number of impacted methods, and the change coverage of the generated test
suites. Soares et al. [40] compare the three approaches (i.e., SafeRefactor, com-
mit messages analysis, and manual analysis) in terms of identifying all behavior
preservation, correctness of the identified behavior preservation, and accuracy
of the obtained results. Mongiovi et al. [47] evaluate the approach by com-745

paring bugs detected by Disabling Preconditions (DP) and Differential Testing
(DT) techniques. Insa et al. [49] compared SecEr with the already available
debugging and testing techniques used when behaviour preservation is checked
in an Erlang project.

4.5.2. Empirical-based evaluation750

For empirical-based evaluation, Soares et al.[34] ran the experiment in 24
refactoring transformations using real Java applications and transformations
applied by refactoring tools. Soares et al. [31] also experimented 16 refactoring
cases which successfully detected more than 93% of errors presented by tradi-
tional refactoring tools. Soares et al. [28] evaluate their approach against 9755

transformations and the approach did not produce any errors compared to 5
wrongly applied transformations by best refactoring tools. Soares et al. [39] as-
sessed their approach by performing an experiment in 27 refactoring operations
of three refactoring tools: Eclipse, JRRT, and NetBeans. Tip et al. [22] [36]
implemented only Extract Interface refactoring in Eclipse to test the proposed760

approach. Soares et al. [37] evaluated the proposed technique in 8 refactorings
applied by Eclipse, 23 design patterns, 2 case studies, and 2 JML compilers.
Schäfer et al. [30] [33] evaluated the correctness of their refactoring engine in
Eclipse test suite. Chen et al. [48] applied RIT in 3 Java open source projects
that have regression test suites. Jonge and Visser [41] assessed their approach765

29

by implementing refactoring for 3 different languages, namely, Mobl, Stratego,
and subset of Java. For Mobl and Stratego, they used the existing compilers,
whereas for Java subset, they implemented the compiler from scratch. Noguera
et al. [42] used a prototype extension of the Eclipse IDE’s to demonstrate their
approach using three annotation libraries: JPA, Aspect5J, and Simple XML.770

RefaFlex was evaluated in [43] with 21,524 refactoring runs on 3 open source
programs. Their approach prevented 1,358 non behavior preservation transfor-
mations.

4.5.3. Formal specification-based evaluation
In four PSs, including [27] [46] [26] [25], the approaches were evaluated by775

formally specifying and verifying the refactoring to ensure that these refactorings
are behaviorally preserved. Ubayashi et al. [29] evaluated their approach by
writing contracts using first-order predicates. Their approach provided good
results and most of these contracts can be generated automatically. Najafi et
al. [45] evaluated their refactoring rules by applying them to an adapted study780

of the Mass Transit Railway System.

4.5.4. Qualitative-based evaluation
In [32], Tsantalis and Chatzigeorgiou assessed their approach using open-

source Java projects in four different ways: (1) performing a qualitative analy-
sis of the refactoring suggestions, (2) using software metrics related to coupling785

and cohesion, (3) having an independent assessment on the refactoring sugges-
tion, and (4) evaluating the efficiency by measuring the computation time with
different size of open-source projects.

4.5.5. Independent assessment-based evaluation
In [32] and [35], the proposed approach was evaluated by an independent790

designer for the system that he developed. The designer provided feedback on
the refactoring result from the proposed approach.

Summary. With regards to the evaluation methods used in the literature
to validate the proposed behavior preservation approaches, PSs used
comparison-based, empirical, formal specification-based, quality-based,
and independent assessment-based evaluation methods. The majority of
PSs empirically evaluate their approaches, and only one study opted for
quality-based and independent assessment-based approaches.

5. Discussion and Open Issues

To ensure that the transformation is behaviorally preserved, we recommend795

incorporating refactoring tools with the following dimensions:

30

• Preconditions & Postconditions & Invariant: These properties are used to
flag potential violations, such as incompatible signatures in member func-
tion redefinition, type-unsafe assignments, or indistinct class and naming
[8]. Refactoring tool support needs to determine the number of the pre-800

conditions, postconditions, and invariants for each refactoring operation
applied by including efficient algorithms for checking these assertions. Al-
though Opdyke proposed a set of refactoring preconditions, there was no
formal proof of the correctness of these conditions. Developers should in-
vest into developing more comprehensive refactoring tools by (1) adding805

library containing these assertions to check refactoring so that any refac-
toring engines for different languages can use this library to test refac-
toring implementation; and (2) adding formal proofs of the correctness of
these assertions to raise the confidence that these set of refactoring help in
ensuring that that the transformations preserve the behavior. Addition-810

ally, the calculation of pre and postcondition scenarios is time-consuming
and error-prone if it is done manually. Future researchers are encouraged
to adopt tools to automatically calculate these assertions and verify the
program evolution process.

• Quality Improvement: In software engineering, maintaining quality is al-815

ways a top priority. As development progresses and flaws inevitably begin
to emerge, they generate what is known as code smells, various indicators
that code needs to be refactored or replaced, and can be helpful in iden-
tifying problem areas that need to be refactored. Due to the number of
design choices, it is challenging to choose the optimal refactorings, max-820

imising the quality of the resulting program while minimizing the cost of
behavior preservation transformation. Besides ensuring behavior preser-
vation of the program, it is also advised to check if the resulting program
improves the quality of the original program. For instance, the resulting
program showcases reusability and provides trustworthiness by reducing825

the complexity of the program.

• Developer Perception: Research in preserving the behavior in software
refactoring thus far focuses on proposing approaches assuming that the
developer’s main intention is to perform pure refactoring. Several studies
[1, 2, 60, 52] have been conducted to better understand the motivation be-830

hind refactoring (e.g., improving the internal and external structure of the
code , removing code smells, etc). Current approaches have not integrated
developers’ perception while preserving the behavior of refactoring activ-
ities. Researchers should explore developers’ insight and experience (e.g.,
when and how) because they are essential in the behavior preservation835

process.

• Automated Testing: Some studies [PS7, PS10, PS12, PS13, PS16, PS19,
PS23] discussed using testing to ensure behavior preservation but with lim-
ited coverage. To increase refactoring safety, it is needed to incorporate a
solid test suite to the traditional refactoring steps in order to pinpoint non840

31

behavior-preservation transformations. That involves generating testing
for refactoring applied at different levels of granularity, and taking into
account the hierarchy or other object-oriented property.

• Tools Availability and Extensibility: As we noticed in relation to studies
[PS1, PS7, PS14, PS21, PS22, PS23, PS28], there is a lack of available845

tools to support the behavior preservation. Researchers will not be able to
adopt behavior preservation approaches because these tools are not avail-
able. As a result, it will make it hard to extend the proposed approaches
(e.g., support more refactoring operations, add additional set of precon-
ditions, etc). Additionally, Eclipse plugin tools require user interaction to850

select projects as inputs to trigger refactorings, which is impractical for a
study requiring a high degree of automation since multiple releases of the
same project must be imported to Eclipse to check whether the behavior
is preserved or not. Further, while some of the current tools warn devel-
opers of non-behavior preservation transformations, these tools could be855

complemented with a compensation transformation that possibly preserve
the behavior. To move the research forward in this area, researchers are
advised to implement a full-featured refactoring engine such as integrat-
ing the tools with control version systems like Git or Subversion to easily
compare code among several versions and to open source these tools and860

allow people to replicate and extend them.

• Broader Applicability: Today, a wide variety of refactoring tools auto-
mates several aspects of refactoring. However, ensuring the behavior
preserving property when building tool-assisted refactoring is challeng-
ing. It is acknowledged that refactoring tools should support the follow-865

ing five characteristics: automation, reliability, configurability, coverage,
and scalability. Integrating behavior-preserving nature reduces the need
to perform testing and debugging. As shown in Figure 4, several stud-
ies presented many approaches to preserve the behavior. However, we
still must understand which approaches are the most effective. While the870

primary studies proposed refactoring preservation approaches, these ap-
proaches should not be language-specific, domain-specific, and refactoring
operation-specific. One important research direction is to generalize the
behavior preservation approach across multiple languages and multiple
domains, and enable semi-automatic formal verification. Researchers are875

encouraged to explore such interests together with the practice of preserv-
ing the behavior in software refactoring.

The above mentioned open issues are listed in Table 11. A summary of the
findings is reported in Table 12. We observe that researchers are biased toward
certain approaches. As can be seen from the table, researchers extensively used880

a precondition-based approach. Testing-based is also popular due to the fact
that researchers are probably implementing preconditions to test whether the
transformation is behaviorally preserved between multiple versions. However,
there are other techniques (e.g., graph-based) that have some potential and

32

perhaps it is stronger or effective for certain problems that have not yet explored.885

Incorporating these specifications in IDE refactoring engines, developers and
researchers can revisit existing refactoring tools and extend them.

Recent refactoring research has been taking developer-centric strategies to
understand how developers refactor and document their refactorings in prac-
tice [61, 62]. Such research has been driven by the rise of several refactoring890

mining tools [2, 63, 50]. Mining the history of previous changes unlocked an-
other dimension of how we should perceive refactoring: Instead of dictating how
refactoring should be performed and preserved, we can reverse engineer how de-
velopers refactor their code and verify the correctness of their operations. Such
findings require accurate detection of refactorings, which can be assured by re-895

cent studies, as they are reaching a significant precision [50]. Furthermore, the
list of mined refactorings has revealed the existence of refactoring types that
were absent from studies handling the behavior preservation [53].

6. Implication

The main implications of this study are as follows:900

6.1. Implication for practitioners:
• Promoting the adoption of behavior preservation approaches in

practice. Due to the growing complexity of software systems, there has
been a dramatic increase and industry demand for tools and techniques
on software refactoring. Refactoring studies are used in industrial set-905

tings and considered objectives beyond improving design to include other
non-functional requirements. Thus, challenges to be addressed by refactor-
ing work nowadays include testing the correctness of applied refactorings.
Recent studies (e.g., [64, 3, 65]) show developers under-using automated
refactoring tools due to the lack of trust, unawareness, and usability prob-910

lems. To mitigate this issue, our study reveals several behavior preser-
vation approaches that can be explored to reduce verification effort. For
example, developers can use the tool Refactoring Investigation and Test-
ing (RIT) to (1) help them detect refactoring changes responsible for test
failures and validating the correctness of the refactored version of the pro-915

gram without the need to rerun the entire regression test suites, and (2)
help developers focusing on the long-term management of accidental com-
plexities created by quick design and implementation (e.g., refactoring to
reduce technical debt).

• Identifying the needed information to the refactored code. The920

awareness of such behavior preservation approaches assist programmers in
distinguishing precondition violations from warning and advisories with-
out wondering if there are any issues with the applied refactoring. Addi-
tionally, it gives programmers an indication of the amount of work required
to fix the problem, and so the programmers can determine whether the925

violation means that the code can be refactored with a few minor changes
or not.

33

Table 11: Open Issues on Behavior Preservation Studies.

Is
su

e
P

Ss
O

pe
n

Is
su

e
I1

-A
ss

er
tio

n
-R

es
ea

rc
he

rs
ca

n
ad

d
lib

ra
rie

s
co

nt
ai

ni
ng

th
es

e
as

se
rt

io
ns

to
te

st
re

fa
ct

or
in

g
im

pl
em

en
ta

tio
n

Pr
ec

on
di

tio
n

PS
1,

PS
2,

PS
3,

PS
4,

PS
8,

PS
11

,P
S1

5,
PS

17
,P

S1
8,

PS
21

,P
S2

6
-R

es
ea

rc
he

rs
ca

n
ad

d
fo

rm
al

pr
oo

fs
of

th
e

co
rr

ec
tn

es
s

of
th

es
e

as
se

rt
io

ns
to

ra
ise

de
ve

lo
pe

rs
’c

on
fid

en
ce

Po
st

co
nd

iti
on

PS
2,

PS
8,

PS
17

,P
S2

1
In

va
ria

nt
PS

8,
PS

9,
PS

21

I2
-Q

ua
lit

y
Im

pr
ov

em
en

t
PS

11
-T

he
st

ud
ie

s
do

no
t

es
ta

bl
ish

an
ex

pl
ic

it
co

nn
ec

tio
n

be
tw

ee
n

be
ha

vi
or

pr
es

er
va

tio
n

ap
pr

oa
ch

an
d

qu
al

ity
,s

ho
w

in
g

th
er

e
is

an
op

po
rt

un
ity

fo
r

fu
rt

he
r

st
ud

ie
s

I3
-D

ev
el

op
er

Pe
rc

ep
tio

n
N

/A

-T
he

us
e

of
de

ve
lo

pe
rs

’p
er

ce
pt

io
n

an
d

kn
ow

le
dg

e
ab

ou
t

re
fa

ct
or

in
g

ca
n

he
lp

to
im

pr
ov

e
re

fa
ct

or
in

g
pr

oc
es

s,
to

ol
s,

am
on

g
ot

he
r

-I
t

is
es

se
nt

ia
lt

o
ev

al
ua

te
th

e
pa

rt
ic

ip
at

io
n

of
de

ve
lo

pe
rs

in
pr

es
er

vi
ng

th
e

be
ha

vi
or

,u
sin

g
de

ve
lo

pe
rs

’i
ns

ig
ht

s
an

d
ex

pe
rie

nc
es

to
im

pr
ov

e
th

e
pr

oc
es

s
I4

-A
ut

om
at

ed
Te

st
in

g
PS

7,
PS

10
,P

S1
2,

PS
13

,P
S1

6,
PS

19
,P

S2
3

-I
t

is
an

op
en

th
em

e
fo

r
re

se
ar

ch
er

s
to

in
co

rp
or

at
e

a
so

lid
te

st
su

ite
s

to
te

st
be

ha
vi

or
pr

es
er

va
tio

n

I5
-T

oo
lA

va
ila

bi
lit

y
&

Ex
te

ns
ib

ili
ty

PS
1,

PS
7,

PS
14

,P
S2

1,
PS

22
,P

S2
3,

PS
28

-T
he

re
ar

e
m

an
y

op
po

rt
un

iti
es

to
pr

op
os

e/
im

pr
ov

e
be

ha
vi

or
pr

es
er

va
tio

n
au

to
m

at
ed

to
ol

s
-W

e
ne

ed
to

in
te

gr
at

e
th

e
to

ol
s

w
ith

co
nt

ro
lv

er
sio

n
sy

st
em

s
su

ch
as

G
it

or
Su

bv
er

sio
n

I6
-B

ro
ad

er
A

pp
lic

ab
ili

ty
N

/A

-W
e

ne
ed

to
ex

pl
or

e
w

hi
ch

ap
pr

oa
ch

es
ar

e
m

os
t

eff
ec

tiv
e

in
be

ha
vi

or
pr

es
er

va
tio

n
-P

ro
du

ct
io

n
of

re
fa

ct
or

in
g-

ag
no

st
ic

ap
pr

oa
ch

-I
m

pl
em

en
ta

tio
n

of
la

ng
ua

ge
-in

de
pe

nd
en

ce
of

re
fa

ct
or

in
g

sc
he

m
es

-T
he

re
ar

e
m

an
y

op
po

rt
un

iti
es

to
re

se
ar

ch
a

lo
w

ex
pl

or
ed

re
fa

ct
or

in
g

op
er

at
io

ns
,m

os
t

us
ed

re
fa

ct
or

in
gs

an
d

th
ei

r
re

la
tio

ns
hi

p
w

ith
be

ha
vi

or
pr

es
er

va
tio

n
-S

ev
er

al
po

ss
ib

le
st

ra
te

gi
es

ca
n

be
co

m
bi

ne
d

to
be

tt
er

de
te

ct
an

y
vi

ol
at

io
n

of
th

e
pr

og
ra

m
se

m
an

tic
s

-I
de

nt
ifi

ca
tio

n
of

th
e

ap
pr

op
ria

te
an

d
m

os
t

re
lia

bl
e

ev
al

ua
tio

n
m

et
ho

ds
to

va
lid

at
e

th
e

fu
tu

re
be

ha
vi

or
pr

es
er

va
tio

n
ap

pr
oa

ch
es

.
-R

ef
ac

to
rin

g
to

ol
s

co
ul

d
be

co
m

pl
em

en
te

d
w

ith
a

co
m

pe
ns

at
io

n
tr

an
sf

or
m

at
io

n
th

at
po

ss
ib

ly
pr

es
er

ve
th

e
be

ha
vi

or
.

-R
es

ea
rc

he
rs

ar
e

en
co

ur
ag

ed
to

ex
pl

or
e

th
e

ab
ov

e-
m

en
tio

ne
d

as
pe

ct
s

to
ge

th
er

w
ith

th
e

pr
ac

tic
e

of
pr

es
er

vi
ng

th
e

be
ha

vi
or

in
so

ftw
ar

e
re

fa
ct

or
in

g.

34

Table 12: Summary of Behavior Preservation Approaches in the Primary Studies.

St
ud

y
ID

St
ud

y
So

ft
w

ar
e

A
rt

ifa
ct

L
an

gu
ag

e
N

o.
of

R
ef

.
R

ef
ac

to
ri

ng
C

la
ss

ifi
ca

ti
on

A
pp

ro
ac

h
E

va
lu

at
io

n
M

et
ho

d
C

od
e

M
od

el
Fo

w
le

r’s
ca

ta
lo

g
M

od
el

re
f.

La
ng

ua
ge

-s
pe

ci
fic

PS
1

R
ob

er
ts

et
al

.
Ye

s
N

o
Sm

al
lta

lk
18

Ye
s

N
o

Ye
s

R
ef

ac
to

rin
g

Sa
fe

ty
To

ol
N

ot
M

en
tio

ne
d

PS
2

M
en

s
et

al
.

Ye
s

Ye
s

N
ot

m
en

tio
ne

d
2

Ye
s

N
o

N
o

G
ra

ph
Tr

an
sf

or
m

at
io

n
Fu

tu
re

Va
lid

at
io

n
To

ol
PS

3
T

ip
et

al
.

Ye
s

N
o

Ja
va

7
Ye

s
N

o
Ye

s
T

yp
e

C
on

st
ra

in
t

Em
pi

ric
al

-b
as

ed
PS

4
G

ar
rid

o
&

M
es

eg
ue

r
Ye

s
N

o
Ja

va
3

Ye
s

N
o

Ye
s

Fo
rm

al
Sp

ec
ifi

ca
tio

n
&

Ve
rifi

ca
tio

n
Fo

rm
al

sp
ec

ifi
ca

tio
n-

ba
se

d
PS

5
St

ra
et

en
et

al
.

N
o

Ye
s

U
M

L
3

N
o

Ye
s

N
o

M
od

el
Tr

an
sf

or
m

at
io

n
Fo

rm
al

sp
ec

ifi
ca

tio
n-

ba
se

d
PS

6
M

as
so

ni
et

al
.

N
o

Ye
s

A
llo

y
7

N
o

Ye
s

N
o

M
od

el
Tr

an
sf

or
m

at
io

n
Fo

rm
al

sp
ec

ifi
ca

tio
n-

ba
se

d
PS

7
So

ar
es

et
al

.
Ye

s
N

o
Ja

va
1

Ye
s

N
o

N
o

R
ef

ac
to

rin
g

Sa
fe

ty
To

ol
Em

pi
ric

al
-b

as
ed

PS
8

U
ba

ya
sh

ie
t

al
.

Ye
s

N
o

A
sp

ec
tJ

27
N

o
N

o
Ye

s
C

on
tr

ac
t-

ba
se

d
Ve

rifi
ca

tio
n

Fo
rm

al
sp

ec
ifi

ca
tio

n-
ba

se
d

PS
9

Sc
hä

fe
r

et
al

.
Ye

s
N

o
Ja

va
3

Ye
s

N
o

N
o

N
am

in
g

B
in

di
ng

Pr
es

er
va

tio
n

Fo
rm

al
sp

ec
ifi

ca
tio

n-
ba

se
d

PS
10

So
ar

es
et

al
.

Ye
s

N
o

Ja
va

8
Ye

s
N

o
Ye

s
R

ef
ac

to
rin

g
Sa

fe
ty

To
ol

Em
pi

ric
al

-b
as

ed
PS

11
Ts

an
ta

lis
&

C
ha

tz
ig

eo
rg

io
u

Ye
s

N
o

Ja
va

1
Ye

s
N

o
N

o
Pr

ec
on

di
tio

n
Ex

am
in

at
io

n
Q

ua
lit

y-
ba

se
d

In
de

pe
nd

en
t

as
se

ss
m

en
t-

ba
se

d
PS

12
Sc

hä
fe

r
&

M
oo

r
Ye

s
N

o
Ja

va
3

Ye
s

N
o

N
o

Sp
ec

ifi
ca

tio
n-

ba
se

d
Fo

rm
al

sp
ec

ifi
ca

tio
n-

ba
se

d
PS

13
So

ar
es

et
al

.
Ye

s
N

o
Ja

va
12

Ye
s

N
o

Ye
s

R
ef

ac
to

rin
g

Sa
fe

ty
To

ol
Em

pi
ric

al
-b

as
ed

PS
14

Ts
an

ta
lis

&
C

ha
tz

ig
eo

rg
io

u
Ye

s
N

o
Ja

va
1

Ye
s

N
o

N
o

R
ef

ac
to

rin
g

Sa
fe

ty
To

ol
Q

ua
lit

y-
ba

se
d

In
de

pe
nd

en
t

as
se

ss
m

en
t-

ba
se

d
PS

15
T

ip
et

al
.

Ye
s

N
o

Ja
va

7
Ye

s
N

o
Ye

s
T

yp
e

C
on

st
ra

in
t

Em
pi

ric
al

-b
as

ed
PS

16
So

ar
es

et
al

.
Ye

s
N

o
A

sp
ec

tJ
7

Ye
s

N
o

Ye
s

R
ef

ac
to

rin
g

Sa
fe

ty
To

ol
Em

pi
ric

al
-b

as
ed

C
om

pa
ris

on
-b

as
ed

PS
17

O
ve

rb
ey

&
Jo

hn
so

n
Ye

s
N

o
Fo

rt
ra

n,
PH

P,
B

C
18

Ye
s

N
o

Ye
s

D
iff

er
en

tia
lP

re
co

nd
iti

on
C

he
ck

in
g

C
om

pa
ris

on
-b

as
ed

PS
18

So
ar

es
et

al
.

Ye
s

N
o

Ja
va

3
Ye

s
N

o
N

o
O

ve
rly

St
ro

ng
Pr

ec
on

di
tio

ns
Id

en
tifi

ca
tio

n
Em

pi
ric

al
-b

as
ed

PS
19

So
ar

es
et

al
.

Ye
s

N
o

Ja
va

36
Ye

s
N

o
Ye

s
R

ef
ac

to
rin

g
Sa

fe
ty

To
ol

C
om

pa
ris

on
-b

as
ed

C
om

m
it

M
es

sa
ge

A
na

ly
sis

M
an

ua
lA

na
ly

sis
PS

20
Jo

ng
e

&
V

iss
er

Ye
s

N
o

Ja
va

,S
tr

at
eg

o,
M

ob
l

1
Ye

s
N

o
N

o
N

am
in

g
B

in
di

ng
Pr

es
er

va
tio

n
Q

ua
lit

y-
ba

se
d

PS
21

N
og

ue
ra

et
al

.
Ye

s
N

o
Ja

va
,A

sp
ec

tJ
,X

M
L

N
ot

M
en

tio
ne

d
Ye

s
N

o
Ye

s
R

ef
ac

to
rin

g
Sa

fe
ty

To
ol

Fo
rm

al
sp

ec
ifi

ca
tio

n-
ba

se
d

PS
22

T
hi

es
et

al
.

Ye
s

N
o

Ja
va

6
Ye

s
N

o
N

o
R

ef
ac

to
rin

g
Sa

fe
ty

To
ol

Em
pi

ric
al

-b
as

ed
PS

23
M

on
gi

ov
ie

t
al

.
Ye

s
N

o
Ja

va
,A

sp
ec

tJ
16

Ye
s

N
o

Ye
s

R
ef

ac
to

rin
g

Sa
fe

ty
To

ol
C

om
pa

ris
on

-b
as

ed
PS

24
N

aj
afi

et
al

.
N

o
Ye

s
U

M
L

N
o

Ye
s

N
o

A
nn

ea
lin

g
&

In
tr

od
uc

e
Su

bt
yp

in
g

Fo
rm

al
sp

ec
ifi

ca
tio

n-
ba

se
d

PS
25

H
or

pÃ
ac

si
Ye

s
N

o
Er

la
ng

6
N

o
N

o
Ye

s
D

ec
om

po
sit

io
n

&
Sc

he
m

es
Fo

rm
al

sp
ec

ifi
ca

tio
n-

ba
se

d
PS

26
M

on
gi

ov
ie

t
al

.
Ye

s
N

o
Ja

va
10

Ye
s

N
o

Ye
s

O
ve

rly
St

ro
ng

Pr
ec

on
di

tio
ns

Id
en

tifi
ca

tio
n

C
om

pa
ris

on
-b

as
ed

PS
27

C
he

n
et

al
.

Ye
s

N
o

Ja
va

5
Ye

s
N

o
N

o
R

ef
ac

to
rin

g
Sa

fe
ty

To
ol

Em
pi

ric
al

-b
as

ed
PS

28
In

sa
et

al
.

N
o

Ye
s

Er
la

ng
N

ot
M

en
tio

ne
d

N
o

N
o

Ye
s

R
ef

ac
to

rin
g

Sa
fe

ty
To

ol
Em

pi
ric

al
-b

as
ed

35

6.2. Implication for researchers:
• Developing refactoring tools tuned towards safer refactoring. As

discussed in Section 5, our study sheds light on a number of desirable930

properties for refactoring tools (e.g., quality improvement, developer per-
ception, automated testing, etc). Future researchers are encouraged to
revisit the existing refactoring tools or build tools that help practitioners
have more confidence in using the tools.

• Exploring the potential of combining multiple behavior preserva-935

tion strategies. Our study shows that there are some behavior preserva-
tion strategies that have been evaluated using single or multiple refactor-
ing operations, and some of these refactorings are applied using multiple
strategies. Future researchers are advised to explore the potential of com-
bining several behavior preservation approaches and use the approaches940

that would be useful in a given context according to a defined set of cri-
teria.

7. Threats to Validity

In this section, the threats are discussed in the context of four types of
threats of validity: internal validity, external validity, construct validity, and945

conclusion validity.
Internal validity: Obtaining a representative set of literature publications for
this SLM can be viewed as a validity threat due to the search process. To min-
imize this threat, we followed the SLM guidelines proposed by [4, 5, 6]. We
considered the related search terms and the main terms from research questions950

to construct the search string and select relevant articles. Further, we followed
a four-stage study selection process and applied the inclusion and exclusion
criteria in each stage as described in Section 3. Another threat is related to
the limitation of the search terms and search engines which might lead to an
incomplete set of literature publications. To limit this threat, we used care-955

fully defined keywords and comprehensive academic search engines (i.e., Google
Scholar and Scopus) that covers the main publisher venues.
External validity: The collected papers contain a significant proportion of aca-
demic works which forms an adequate basis for concluding findings that could be
useful for academia. However, we cannot claim that the same behavior preser-960

vation approaches are used in industry. Also, our findings are mainly within
the field of software refactoring. We cannot generalize our results beyond this
subject.
Construct validity: Threats related to the construct validity are the suitability
of the research questions and the categorization scheme used to extract the data.965

To mitigate these threats, the research questions and the categorization schemes
were discussed among the authors.
Conclusion validity: Concerning the subjectivity of the assessment of the PS’s,
the primary studies were reviewed by at least two authors to mitigate bias in

36

data extraction. In case of disagreements, the researchers discussed these cases970

to reach consensus.

8. Conclusion

In this paper, we mapped and reviewed the body of knowledge on behavior
preservation in software refactoring. We systematically reviewed 28 papers and
classified them. This research sets out to aggregate, summarize, and discuss975

the practical approaches that ensure behavior-preserving refactoring transfor-
mations. Our main findings show that (1) code artifacts have the main focus in
refactoring literature, (2) some refactoring types were studied more frequently
than others, (3) several behavior preservation approaches proposed in the lit-
erature including the concepts and techniques that guarantee program correct-980

ness when dealing with refactoring activities, the automated analyses that are
proposed, and the manual analysis approach, and (4) the majority of the PSs
empirically evaluate their approaches. This existing research evaluates the cor-
rectness of the transformation and whether or not these approaches lead to a
safe and trustworthy refactoring.985

Lesson learned. Research around behavior preservation of software refactoring
has mainly focused on precondition-based strategy. However, other techniques
such as graph-based have potential and might be more effective for particular
problems. Consequently, current and future research in this area should ex-
plore the suitability of each technique based on the context and the possibility990

of incorporating several strategies to ensure the correctness of program trans-
formation. Further, current refactoring engines are limited to certain features.
Future research should strive to implement a full-featured refactoring engine to
increase developers’ trust in refactoring tools.

Appendix A Primary Studies995

List of accepted literature publications:
(PS1) D. Roberts, J. Brant, R. Johnson, A refactoring tool for smalltalk, Theory and Practice

of Object systems 3 (4) (1997) 253–263
(PS2) T. Mens, N. Van Eetvelde, D. Janssens, S. Demeyer, Formalising refactorings with

graph transformations, 2003, p. 691000

(PS3) F. Tip, A. Kiezun, D. Bäumer, Refactoring for generalization using type constraints,
in: Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-oriented
Programing, Systems, Languages, and Applications, OOPSLA ’03, ACM, New York,
NY, USA, 2003, pp. 13–26. doi:10.1145/949305.949308.
URL http://doi.acm.org/10.1145/949305.9493081005

(PS4) A. Garrido, J. Meseguer, Formal specification and verification of java refactorings, in:
2006 Sixth IEEE International Workshop on Source Code Analysis and Manipulation,
2006, pp. 165–174. doi:10.1109/SCAM.2006.16

(PS5) R. Van Der Straeten, V. Jonckers, T. Mens, A formal approach to model refactoring
and model refinement, Software & Systems Modeling 6 (2) (2007) 139–162. doi:10.1010

1007/s10270-006-0025-9.
URL https://doi.org/10.1007/s10270-006-0025-9

37

http://doi.acm.org/10.1145/949305.949308
http://dx.doi.org/10.1145/949305.949308
http://doi.acm.org/10.1145/949305.949308
http://dx.doi.org/10.1109/SCAM.2006.16
https://doi.org/10.1007/s10270-006-0025-9
https://doi.org/10.1007/s10270-006-0025-9
http://dx.doi.org/10.1007/s10270-006-0025-9
http://dx.doi.org/10.1007/s10270-006-0025-9
http://dx.doi.org/10.1007/s10270-006-0025-9
https://doi.org/10.1007/s10270-006-0025-9

(PS6) T. Massoni, R. Gheyi, P. Borba, Formal model-driven program refactoring, in: Pro-
ceedings of the Theory and Practice of Software, 11th International Conference on Fun-
damental Approaches to Software Engineering, FASE’08/ETAPS’08, Springer-Verlag,1015

Berlin, Heidelberg, 2008, pp. 362–376.
URL http://dl.acm.org/citation.cfm?id=1792838.1792873

(PS7) G. Soares, D. Cavalcanti, R. Gheyi, T. Massoni, D. Serey, M. Cornélio, Saferefactor-tool
for checking refactoring safety

(PS8) N. Ubayashi, J. Piao, S. Shinotsuka, T. Tamai, Contract-based verification for aspect-1020

oriented refactoring, in: 2008 1st International Conference on Software Testing, Verifi-
cation, and Validation, IEEE, 2008, pp. 180–189

(PS9) M. Schäfer, T. Ekman, O. De Moor, Sound and extensible renaming for java, in: Pro-
ceedings of the 23rd ACM SIGPLAN conference on Object-oriented programming sys-
tems languages and applications, 2008, pp. 277–2941025

(PS10) G. Soares, R. Gheyi, T. Massoni, M. Cornélio, D. Cavalcanti, Generating unit tests
for checking refactoring safety, in: Brazilian Symposium on Programming Languages,
2009, pp. 159–172

(PS11) N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring oppor-
tunities, IEEE Transactions on Software Engineering 35 (3) (2009) 347–367. doi:1030

10.1109/TSE.2009.1
(PS12) M. Schäfer, O. De Moor, Specifying and implementing refactorings, in: Proceedings of

the ACM international conference on Object oriented programming systems languages
and applications, 2010, pp. 286–301

(PS13) G. Soares, R. Gheyi, D. Serey, T. Massoni, Making program refactoring safer, IEEE1035

Software 27 (4) (2010) 52–57. doi:10.1109/MS.2010.63
(PS14) N. Tsantalis, A. Chatzigeorgiou, Identification of refactoring opportunities introducing

polymorphism, Journal of Systems and Software 83 (3) (2010) 391–404
(PS15) F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, B. De Sutter, Refactoring

using type constraints, ACM Transactions on Programming Languages and Systems1040

(TOPLAS) 33 (3) (2011) 1–47
(PS16) G. Soares, D. Cavalcanti, R. Gheyi, Making aspect-oriented refactoring safer, in: Pro-

ceedings of the 15th Brazilian Symposium on Programming Languages, SBLP, Vol. 11,
2011, pp. 91–105

(PS17) J. L. Overbey, R. E. Johnson, Differential precondition checking: A lightweight, reusable1045

analysis for refactoring tools, in: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), 2011, pp. 303–312. doi:10.1109/ASE.
2011.6100067

(PS18) G. Soares, M. Mongiovi, R. Gheyi, Identifying overly strong conditions in refactoring
implementations, in: 2011 27th IEEE International Conference on Software Mainte-1050

nance (ICSM), 2011, pp. 173–182. doi:10.1109/ICSM.2011.6080784
(PS19) G. Soares, R. Gheyi, E. Murphy-Hill, B. Johnson, Comparing approaches to analyze

refactoring activity on software repositories, Journal of Systems and Software 86 (4)
(2013) 1006 – 1022, sI : Software Engineering in Brazil: Retrospective and Prospective
Views. doi:https://doi.org/10.1016/j.jss.2012.10.040.1055

URL http://www.sciencedirect.com/science/article/pii/S016412121200297X
(PS20) M. De Jonge, E. Visser, A language generic solution for name binding preservation in

refactorings, in: Proceedings of the Twelfth Workshop on Language Descriptions, Tools,
and Applications, 2012, pp. 1–8

(PS21) C. Noguera, A. Kellens, C. De Roover, V. Jonckers, Refactoring in the presence of1060

annotations, in: 2012 28th IEEE International Conference on Software Maintenance
(ICSM), IEEE, 2012, pp. 337–346

(PS22) A. Thies, E. Bodden, Refaflex: Safer refactorings for reflective java programs, in: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis, 2012,
pp. 1–111065

(PS23) M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, P. Borba, Making refactoring safer
through impact analysis, Sci. Comput. Program. 93 (2014) 39–64. doi:10.1016/j.
scico.2013.11.001.
URL http://dx.doi.org/10.1016/j.scico.2013.11.001

38

http://dl.acm.org/citation.cfm?id=1792838.1792873
http://dl.acm.org/citation.cfm?id=1792838.1792873
http://dx.doi.org/10.1109/TSE.2009.1
http://dx.doi.org/10.1109/TSE.2009.1
http://dx.doi.org/10.1109/TSE.2009.1
http://dx.doi.org/10.1109/MS.2010.63
http://dx.doi.org/10.1109/ASE.2011.6100067
http://dx.doi.org/10.1109/ASE.2011.6100067
http://dx.doi.org/10.1109/ICSM.2011.6080784
http://www.sciencedirect.com/science/article/pii/S016412121200297X
http://www.sciencedirect.com/science/article/pii/S016412121200297X
http://dx.doi.org/https://doi.org/10.1016/j.jss.2012.10.040
http://www.sciencedirect.com/science/article/pii/S016412121200297X
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001

(PS24) M. Najafi, H. Haghighi, T. Z. Nasab, A set of refactoring rules for uml-b specifications,1070

Computing and Informatics 35 (2) (2016) 411–440
(PS25) D. Horpácsi, J. Köszegi, Z. Horváth, Trustworthy refactoring via decomposition and

schemes: A complex case study, in: VPT@ETAPS, 2017
(PS26) M. Mongiovi, R. Gheyi, G. Soares, M. Ribeiro, P. Borba, L. Teixeira, Detecting overly

strong preconditions in refactoring engines, IEEE Transactions on Software Engineering1075

44 (5) (2018) 429–452. doi:10.1109/TSE.2017.2693982
(PS27) Z. Chen, H.-F. Guo, M. Song, Improving regression test efficiency with an awareness

of refactoring changes, Information and Software Technology 103 (2018) 174–187
(PS28) D. Insa, S. Pérez, J. Silva, S. Tamarit, Behaviour preservation across code versions in

erlang, Scientific Programming 20181080

References

[1] M. Kim, T. Zimmermann, N. Nagappan, An empirical study of refactoring challenges and
benefits at microsoft, IEEE Transactions on Software Engineering 40 (7) (2014) 633–649.

[2] D. Silva, N. Tsantalis, M. T. Valente, Why we refactor? confessions of github contrib-
utors, in: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on1085

Foundations of Software Engineering, FSE 2016, ACM, New York, NY, USA, 2016, pp.
858–870. doi:10.1145/2950290.2950305.
URL http://doi.acm.org/10.1145/2950290.2950305

[3] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know it, IEEE
Transactions on Software Engineering 38 (1) (2012) 5–18. doi:10.1109/TSE.2011.41.1090

[4] B. Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in
software engineering (2007).

[5] C. Wohlin, Guidelines for snowballing in systematic literature studies and a replication in
software engineering, in: Proceedings of the 18th international conference on evaluation
and assessment in software engineering, 2014, pp. 1–10.1095

[6] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in software
engineering, in: 12th International Conference on Evaluation and Assessment in Software
Engineering (EASE) 12, 2008, pp. 1–10.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, d. Roberts, Refactoring: Improving the
Design of Existing Code, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,1100

USA, 1999.
URL http://dl.acm.org/citation.cfm?id=311424

[8] W. F. Opdyke, Refactoring object-oriented frameworks, Ph.D. thesis, Champaign, IL,
USA, uMI Order No. GAX93-05645 (1992).

[9] T. Mens, T. Tourwe, A survey of software refactoring, IEEE Transactions on Software1105

Engineering 30 (2) (2004) 126–139. doi:10.1109/TSE.2004.1265817.

[10] M. Zhang, T. Hall, N. Baddoo, Code bad smells: A review of current knowledge, J.
Softw. Maint. Evol. 23 (3) (2011) 179–202. doi:10.1002/smr.521.
URL http://dx.doi.org/10.1002/smr.521

[11] M. Abebe, C.-J. Yoo, Trends, opportunities and challenges of software refactoring: A1110

systematic literature review 8 (2014) 299–318.

[12] M. Misbhauddin, M. Alshayeb, Uml model refactoring: a systematic literature
review, Empirical Software Engineering 20 (1) (2015) 206–251. doi:10.1007/
s10664-013-9283-7.
URL https://doi.org/10.1007/s10664-013-9283-71115

39

http://dx.doi.org/10.1109/TSE.2017.2693982
http://doi.acm.org/10.1145/2950290.2950305
http://doi.acm.org/10.1145/2950290.2950305
http://dx.doi.org/10.1145/2950290.2950305
http://doi.acm.org/10.1145/2950290.2950305
http://dx.doi.org/10.1109/TSE.2011.41
http://dl.acm.org/citation.cfm?id=311424
http://dl.acm.org/citation.cfm?id=311424
http://dl.acm.org/citation.cfm?id=311424
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1002/smr.521
http://dx.doi.org/10.1002/smr.521
http://dx.doi.org/10.1002/smr.521
https://doi.org/10.1007/s10664-013-9283-7
https://doi.org/10.1007/s10664-013-9283-7
http://dx.doi.org/10.1007/s10664-013-9283-7
http://dx.doi.org/10.1007/s10664-013-9283-7
https://doi.org/10.1007/s10664-013-9283-7

[13] J. A. Dallal, Identifying refactoring opportunities in object-oriented code: A systematic
literature review, Information and Software Technology 58 (2015) 231 – 249. doi:https:
//doi.org/10.1016/j.infsof.2014.08.002.
URL http://www.sciencedirect.com/science/article/pii/S0950584914001918

[14] S. Singh, S. Kaur, A systematic literature review: Refactoring for disclosing code smells1120

in object oriented software, Ain Shams Engineering Journaldoi:https://doi.org/10.
1016/j.asej.2017.03.002.
URL http://www.sciencedirect.com/science/article/pii/S2090447917300412

[15] J. A. Dallal, A. Abdin, Empirical evaluation of the impact of object-oriented code refac-
toring on quality attributes: A systematic literature review, IEEE Transactions on Soft-1125

ware Engineering PP (99) (2017) 1–1. doi:10.1109/TSE.2017.2658573.

[16] T. Mariani, S. R. Vergilio, A systematic review on search-based refactoring, Information
and Software Technology 83 (2017) 14 – 34. doi:https://doi.org/10.1016/j.infsof.
2016.11.009.
URL http://www.sciencedirect.com/science/article/pii/S09505849163037791130

[17] A. A. B. Baqais, M. Alshayeb, Automatic software refactoring: a systematic literature
review, Software Quality Journal 28 (2) (2020) 459–502.

[18] M. O. Cinnéide, Automated application of design patterns: a refactoring approach, Trin-
ity College Dublin, 2001.

[19] V. Garousi, M. V. Mäntylä, A systematic literature review of literature reviews in software1135

testing, Information and Software Technology 80 (2016) 195 – 216. doi:https://doi.
org/10.1016/j.infsof.2016.09.002.
URL http://www.sciencedirect.com/science/article/pii/S0950584916301446

[20] H. , S. , A. , M. Abdollahi Azgomi, Uml model refactoring with emphasis on behavior
preservation (2008) 125–.1140

[21] B. Kitchenham, P. Brereton, A systematic review of systematic review process research
in software engineering, Information and Software Technology 55 (12) (2013) 2049 – 2075.
doi:https://doi.org/10.1016/j.infsof.2013.07.010.
URL http://www.sciencedirect.com/science/article/pii/S0950584913001560

[22] F. Tip, A. Kiezun, D. Bäumer, Refactoring for generalization using type constraints,1145

in: Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-oriented
Programing, Systems, Languages, and Applications, OOPSLA ’03, ACM, New York,
NY, USA, 2003, pp. 13–26. doi:10.1145/949305.949308.
URL http://doi.acm.org/10.1145/949305.949308

[23] D. Roberts, J. Brant, R. Johnson, A refactoring tool for smalltalk, Theory and Practice1150

of Object systems 3 (4) (1997) 253–263.

[24] T. Mens, N. Van Eetvelde, D. Janssens, S. Demeyer, Formalising refactorings with graph
transformations, 2003, p. 69.

[25] A. Garrido, J. Meseguer, Formal specification and verification of java refactorings, in:
2006 Sixth IEEE International Workshop on Source Code Analysis and Manipulation,1155

2006, pp. 165–174. doi:10.1109/SCAM.2006.16.

[26] R. Van Der Straeten, V. Jonckers, T. Mens, A formal approach to model refactoring and
model refinement, Software & Systems Modeling 6 (2) (2007) 139–162. doi:10.1007/
s10270-006-0025-9.
URL https://doi.org/10.1007/s10270-006-0025-91160

40

http://www.sciencedirect.com/science/article/pii/S0950584914001918
http://www.sciencedirect.com/science/article/pii/S0950584914001918
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2014.08.002
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2014.08.002
http://www.sciencedirect.com/science/article/pii/S0950584914001918
http://www.sciencedirect.com/science/article/pii/S2090447917300412
http://www.sciencedirect.com/science/article/pii/S2090447917300412
http://www.sciencedirect.com/science/article/pii/S2090447917300412
http://dx.doi.org/https://doi.org/10.1016/j.asej.2017.03.002
http://dx.doi.org/https://doi.org/10.1016/j.asej.2017.03.002
http://www.sciencedirect.com/science/article/pii/S2090447917300412
http://dx.doi.org/10.1109/TSE.2017.2658573
http://www.sciencedirect.com/science/article/pii/S0950584916303779
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2016.11.009
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2016.11.009
http://www.sciencedirect.com/science/article/pii/S0950584916303779
http://www.sciencedirect.com/science/article/pii/S0950584916301446
http://www.sciencedirect.com/science/article/pii/S0950584916301446
http://www.sciencedirect.com/science/article/pii/S0950584916301446
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2016.09.002
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2016.09.002
http://www.sciencedirect.com/science/article/pii/S0950584916301446
http://www.sciencedirect.com/science/article/pii/S0950584913001560
http://www.sciencedirect.com/science/article/pii/S0950584913001560
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2013.07.010
http://www.sciencedirect.com/science/article/pii/S0950584913001560
http://doi.acm.org/10.1145/949305.949308
http://dx.doi.org/10.1145/949305.949308
http://doi.acm.org/10.1145/949305.949308
http://dx.doi.org/10.1109/SCAM.2006.16
https://doi.org/10.1007/s10270-006-0025-9
https://doi.org/10.1007/s10270-006-0025-9
http://dx.doi.org/10.1007/s10270-006-0025-9
http://dx.doi.org/10.1007/s10270-006-0025-9
https://doi.org/10.1007/s10270-006-0025-9

[27] T. Massoni, R. Gheyi, P. Borba, Formal model-driven program refactoring, in: Proceed-
ings of the Theory and Practice of Software, 11th International Conference on Fundamen-
tal Approaches to Software Engineering, FASE’08/ETAPS’08, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 362–376.
URL http://dl.acm.org/citation.cfm?id=1792838.17928731165

[28] G. Soares, D. Cavalcanti, R. Gheyi, T. Massoni, D. Serey, M. Cornélio, Saferefactor-tool
for checking refactoring safety.

[29] N. Ubayashi, J. Piao, S. Shinotsuka, T. Tamai, Contract-based verification for aspect-
oriented refactoring, in: 2008 1st International Conference on Software Testing, Verifica-
tion, and Validation, IEEE, 2008, pp. 180–189.1170

[30] M. Schäfer, T. Ekman, O. De Moor, Sound and extensible renaming for java, in: Proceed-
ings of the 23rd ACM SIGPLAN conference on Object-oriented programming systems
languages and applications, 2008, pp. 277–294.

[31] G. Soares, R. Gheyi, T. Massoni, M. Cornélio, D. Cavalcanti, Generating unit tests for
checking refactoring safety, in: Brazilian Symposium on Programming Languages, 2009,1175

pp. 159–172.

[32] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring opportunities,
IEEE Transactions on Software Engineering 35 (3) (2009) 347–367. doi:10.1109/TSE.
2009.1.

[33] M. Schäfer, O. De Moor, Specifying and implementing refactorings, in: Proceedings of1180

the ACM international conference on Object oriented programming systems languages
and applications, 2010, pp. 286–301.

[34] G. Soares, R. Gheyi, D. Serey, T. Massoni, Making program refactoring safer, IEEE
Software 27 (4) (2010) 52–57. doi:10.1109/MS.2010.63.

[35] N. Tsantalis, A. Chatzigeorgiou, Identification of refactoring opportunities introducing1185

polymorphism, Journal of Systems and Software 83 (3) (2010) 391–404.

[36] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, B. De Sutter, Refactor-
ing using type constraints, ACM Transactions on Programming Languages and Systems
(TOPLAS) 33 (3) (2011) 1–47.

[37] G. Soares, D. Cavalcanti, R. Gheyi, Making aspect-oriented refactoring safer, in: Pro-1190

ceedings of the 15th Brazilian Symposium on Programming Languages, SBLP, Vol. 11,
2011, pp. 91–105.

[38] J. L. Overbey, R. E. Johnson, Differential precondition checking: A lightweight, reusable
analysis for refactoring tools, in: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), 2011, pp. 303–312. doi:10.1109/ASE.1195

2011.6100067.

[39] G. Soares, M. Mongiovi, R. Gheyi, Identifying overly strong conditions in refactoring
implementations, in: 2011 27th IEEE International Conference on Software Maintenance
(ICSM), 2011, pp. 173–182. doi:10.1109/ICSM.2011.6080784.

[40] G. Soares, R. Gheyi, E. Murphy-Hill, B. Johnson, Comparing approaches to analyze1200

refactoring activity on software repositories, Journal of Systems and Software 86 (4)
(2013) 1006 – 1022, sI : Software Engineering in Brazil: Retrospective and Prospective
Views. doi:https://doi.org/10.1016/j.jss.2012.10.040.
URL http://www.sciencedirect.com/science/article/pii/S016412121200297X

[41] M. De Jonge, E. Visser, A language generic solution for name binding preservation in1205

refactorings, in: Proceedings of the Twelfth Workshop on Language Descriptions, Tools,
and Applications, 2012, pp. 1–8.

41

http://dl.acm.org/citation.cfm?id=1792838.1792873
http://dl.acm.org/citation.cfm?id=1792838.1792873
http://dx.doi.org/10.1109/TSE.2009.1
http://dx.doi.org/10.1109/TSE.2009.1
http://dx.doi.org/10.1109/MS.2010.63
http://dx.doi.org/10.1109/ASE.2011.6100067
http://dx.doi.org/10.1109/ASE.2011.6100067
http://dx.doi.org/10.1109/ASE.2011.6100067
http://dx.doi.org/10.1109/ICSM.2011.6080784
http://www.sciencedirect.com/science/article/pii/S016412121200297X
http://www.sciencedirect.com/science/article/pii/S016412121200297X
http://www.sciencedirect.com/science/article/pii/S016412121200297X
http://dx.doi.org/https://doi.org/10.1016/j.jss.2012.10.040
http://www.sciencedirect.com/science/article/pii/S016412121200297X

[42] C. Noguera, A. Kellens, C. De Roover, V. Jonckers, Refactoring in the presence of anno-
tations, in: 2012 28th IEEE International Conference on Software Maintenance (ICSM),
IEEE, 2012, pp. 337–346.1210

[43] A. Thies, E. Bodden, Refaflex: Safer refactorings for reflective java programs, in: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis, 2012,
pp. 1–11.

[44] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, P. Borba, Making refactoring safer through
impact analysis, Sci. Comput. Program. 93 (2014) 39–64. doi:10.1016/j.scico.2013.1215

11.001.
URL http://dx.doi.org/10.1016/j.scico.2013.11.001

[45] M. Najafi, H. Haghighi, T. Z. Nasab, A set of refactoring rules for uml-b specifications,
Computing and Informatics 35 (2) (2016) 411–440.

[46] D. Horpácsi, J. Köszegi, Z. Horváth, Trustworthy refactoring via decomposition and1220

schemes: A complex case study, in: VPT@ETAPS, 2017.

[47] M. Mongiovi, R. Gheyi, G. Soares, M. Ribeiro, P. Borba, L. Teixeira, Detecting overly
strong preconditions in refactoring engines, IEEE Transactions on Software Engineering
44 (5) (2018) 429–452. doi:10.1109/TSE.2017.2693982.

[48] Z. Chen, H.-F. Guo, M. Song, Improving regression test efficiency with an awareness of1225

refactoring changes, Information and Software Technology 103 (2018) 174–187.

[49] D. Insa, S. Pérez, J. Silva, S. Tamarit, Behaviour preservation across code versions in
erlang, Scientific Programming 2018.

[50] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig, Accurate and effi-
cient refactoring detection in commit history, in: Proceedings of the 40th International1230

Conference on Software Engineering, ACM, 2018, pp. 483–494.

[51] A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, Contextualizing rename
decisions using refactorings, commit messages, and data types, Journal of Systems and
Software 169 (2020) 110704.

[52] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, A. Ouni, M. Kessentini, How we1235

refactor and how we document it? on the use of supervised machine learning algorithms to
classify refactoring documentation, Expert Systems with Applications 167 (2021) 114176.

[53] N. Tsantalis, A. Ketkar, D. Dig, Refactoringminer 2.0, IEEE Transactions on Software
Engineering.

[54] F. Baader, The description logic handbook: Theory, implementation and applications,1240

Cambridge university press, 2003.

[55] W. M. McKeeman, Differential testing for software. 10 (1998) 100–107.

[56] T.-H. Dao, H. A. Le, N. T. Truong, An approach to analyzing execution preservation in
java program refactoring, in: International Conference on Context-Aware Systems and
Applications, Springer, 2016, pp. 101–110.1245

[57] M. Mongiovi, Safira: A tool for evaluating behavior preservation, in: Proceedings of
the ACM international conference companion on Object oriented programming systems
languages and applications companion, 2011, pp. 213–214.

[58] J. Ratzinger, sPACE: Software Project Assessment in the Course of Evolution, Ph.D.
thesis (2007).1250

URL http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_
phd-thesis_space.pdf

42

http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1109/TSE.2017.2693982
http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_phd-thesis_space.pdf
http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_phd-thesis_space.pdf
http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_phd-thesis_space.pdf

[59] J. Ratzinger, T. Sigmund, H. C. Gall, On the relation of refactorings and software defect
prediction, in: Proceedings of the 2008 International Working Conference on Mining
Software Repositories, MSR ’08, ACM, New York, NY, USA, 2008, pp. 35–38. doi:1255

10.1145/1370750.1370759.
URL http://doi.acm.org/10.1145/1370750.1370759

[60] E. A. AlOmar, M. W. Mkaouer, A. Ouni, M. Kessentini, On the impact of refactoring
on the relationship between quality attributes and design metrics, in: 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM),1260

IEEE, 2019, pp. 1–11.

[61] D. Zhang, B. Li, Z. Li, P. Liang, A preliminary investigation of self-admitted refactorings
in open source software, 2018. doi:10.18293/SEKE2018-081.

[62] E. A. AlOmar, M. W. Mkaouer, A. Ouni, Can refactoring be self-affirmed? an exploratory
study on how developers document their refactoring activities in commit messages, in:1265

Proceedings of the 3nd International Workshop on Refactoring-accepted. IEEE, 2019.

[63] D. Silva, M. T. Valente, Refdiff: Detecting refactorings in version histories, in: 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), 2017,
pp. 269–279. doi:10.1109/MSR.2017.14.

[64] M. Vakilian, R. E. Johnson, Alternate refactoring paths reveal usability problems, in:1270

Proceedings of the 36th international conference on software engineering, 2014, pp. 1106–
1116.

[65] A. Bogart, E. A. AlOmar, M. W. Mkaouer, A. Ouni, Increasing the trust in refactoring
through visualization, in: Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, 2020, pp. 334–341.1275

43

http://doi.acm.org/10.1145/1370750.1370759
http://doi.acm.org/10.1145/1370750.1370759
http://dx.doi.org/10.1145/1370750.1370759
http://dx.doi.org/10.1145/1370750.1370759
http://dx.doi.org/10.1145/1370750.1370759
http://doi.acm.org/10.1145/1370750.1370759
http://dx.doi.org/10.18293/SEKE2018-081
http://dx.doi.org/10.1109/MSR.2017.14

	Introduction
	Background & Related Work
	Behavior preserving transformation
	Other systematic literature reviews in refactoring

	Research Method
	Research questions
	RQ1: What types of software artifacts and language paradigms were covered in the PSs to examine behavior preservation?
	RQ2: What refactoring types were considered in the PSs?
	RQ3: What approaches were considered by the PSs to test the behavior-preserving transformations in software refactoring?
	RQ4: What evaluation methods were used in the PSs to assess the proposed behavior preservation approaches?

	Search strategy
	Study selection
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Data extraction

	Results
	Overview of the PSs
	RQ1: What types of software artifacts and language paradigms were covered in the PSs to examine behavior preservation?
	RQ2: What refactoring types were considered in the PSs?
	RQ3: What approaches were considered by the PSs to test the behavior-preserving transformations in software refactoring?
	Refactoring Formalisms and Techniques
	Graph Transformation
	Type Constraints
	Formal Specification and Verification
	Model Transformation
	Differential Precondition Checking
	Decomposition and Schemes
	Overly Strong Precondition Identification
	Behavior Preservation Preconditions Examination
	Contract-based Verification
	Specification-based Refactoring
	Name Binding Preservation

	Automated Analyses
	Refactoring Safety Tools
	Commit Message Analysis

	Manual Analysis

	RQ4: What evaluation methods were used in the PSs to assess the proposed behavior preservation approaches?
	Comparison-based evaluation
	Empirical-based evaluation
	Formal specification-based evaluation
	Qualitative-based evaluation
	Independent assessment-based evaluation

	Discussion and Open Issues
	Implication
	Implication for practitioners:
	Implication for researchers:

	Threats to Validity
	Conclusion
	Primary Studies

