
Increasing the Trust In Refactoring Through Visualization
Alex Bogart

alex.bogart@mail.rit.edu
Rochester Institute of Technology

Rochester, New York, USA

Eman Abdullah AlOmar
eman.alomar@mail.rit.edu

Rochester Institute of Technology
Rochester, New York, USA

Mohamed Wiem Mkaouer
mwmvse@rit.edu

Rochester Institute of Technology
Rochester, New York, USA

Ali Ouni
ali.ouni@etsmtl.ca

ETS Montreal, University of Quebec
Montreal, Quebec, Canada

ABSTRACT
In software development, maintaining good design is es-

sential. The process of refactoring enables developers to im-
prove this design during development without altering the
program’s existing behavior. However, this process can be
time-consuming, introduce semantic errors, and be difficult
for developers inexperienced with refactoring or unfamiliar
with a given code base. Automated refactoring tools can help
not only by applying these changes, but by identifying oppor-
tunities for refactoring. Yet, developers have not been quick
to adopt these tools due to a lack of trust between the devel-
oper and the tool. We propose an approach in the form of a
visualization to aid developers in understanding these sug-
gested operations and increasing familiarity with automated
refactoring tools. We also provide a manual validation of this
approach and identify options to continue experimentation.

CCS CONCEPTS
• Software and its engineering → Software organization
and properties.
KEYWORDS
Software maintenance and evolution, Refactoring, Visualiza-
tion.
ACM Reference Format:
Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer,
and Ali Ouni. 2021. Increasing the Trust In Refactoring Through Visu-
alization. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Quality is the key of longevity for any software, mainly de-

pendent upon architecture, complexity, and a myriad of other
nonfunctional attributes. Given the inevitability that, along
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACMmust be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

several cycles and releases, the growth of software, in terms of
size and services, will cause its initial, well-engineered design
decay. Refactoring has been defined as the de facto of preserving
the software’s design by reverse the negative effects of con-
tinuous development without altering the software external
behavior.

Refactoring refers to improving the quality of a code base
after design has concluded and development is underway by
altering the way in which the program is structured without
altering external behavior [10]. It optimizes the high-level
perspective of the system by applying design-based improve-
ments (such as relocating and restructuring fields, methods,
and classes) and by enhancing the code’s readability and mod-
ifiability. The driving force behind these changes is either im-
proving static metrics and quality attributes, including cou-
pling, cohesion, and complexity [4, 15, 17–19] or by removing
code smells, such as shotgun surgeries, god classes and blobs
[7, 9, 10, 16, 22, 23]. Many modern integrated development
environments (IDEs) have commonly deployed refactoring
operations like Rename and Move Method refactoring as built-
in functions, eliminating the need to handle any side-effects of
manual refactoring that might affect the system’s behavior. In
other words, this functionality uses pre- and post-application
checks to verify that no semantic changes were introduced.

Refactoring can be manual or automated. As software grow
in size and complexity, manual refactoring becomes complex
as well, subjective, and even error prone. Therefore, several
studies have been exploring the automation of refactoring and
several tools and frameworks have been proposed as to sup-
port developers in automatically recommending refactoring
operations [4, 7, 11]. Particularly, JDeodorant [7] stands as
one of the popular tools that have been provided as an Eclipse
plugin for the community. It automatically detects design anti-
patterns, and offers a wide variety of possible refactorings to
correct them. Developers, are then responsible of choosing
the most adequate refactoring operations according to their
design choices and preferences.

The promise of automated approaches is to greatly increase
the efficiency and accuracy of the refactoring. However, refac-
toring tools see considerably less than expected use among
modern developers [2, 21]. Amidst various complaints regard-
ing these tools, many developers simply do not trust them,
either in their assessments, behavior preservation, or in the
many changes they introduce to the existing design, because,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

although developers are eager to optimize their code base,
they still want to recognize their existing design. Thus, exist-
ing researchers seem to be fighting an uphill battle as they
increase the accuracy, and so the automation of refactoring,
while simultaneously trying to convince developers to deploy
them.

As our aim, in this paper, is the support of developers to be-
comes more familiar with automated refactoring. This would
not have been possible without the original developers of
JDeodorant making their tool open-source as well, and for
that we are grateful. In addition to this extension itself, we
present the design process that led to its creation as a contri-
bution. The development of the extension itself serves as the
precursor to the validation, essentially serving as a proof of
concept.

Specifically, this extension is built upon the popular refactor-
ing tool JDeodorant [7], extending its interactivity as follows:
we define a fine-grained visualization of multiple refactoring
operations suggested to the user by the primary refactoring
tool, enabling developers to better understand the impact of
applying these refactorings, as well as conflicts that might arise
during their application. This introduces the possibility of ap-
proximating simultaneous execution of multiple refactoring
operations, rather than serially executing refactorings without
a complete plan, helping to reduce the human effort required
to optimize the system.

For the sake of simplicity, in this work, the term “extension”
shall refer to the functionality we developed and added to
JDeodorant, while “tool” shall refer to a fully-fledged refactor-
ing tool, such as JDeodorant.

To aid in this endeavor, this work provides the following
contributions:

• Firstly, an extension allowing the simultaneous execu-
tion and the visualization of multiple refactorings.

• Secondly, an analysis of this extension’s effect in reduc-
ing the users’ and performance effort when refactoring
existing software systems, in comparison with the origi-
nal tool.

The paper is structured as follows: Section 2 discusses the
advantages and limitations of existing refactoring tools. Sec-
tion 3 details the different features of our extension. Section 4
outlines the research questions, used to drive our validation,
and discusses the results. Section 5 captures any threats to our
study validity, before concluding with Section 6.

2 RELATEDWORK
Detection tools can be defined by three levels of functionality.

At the first and lowest level, most detection tools work by
detecting code smells. By analyzingmostly staticmetrics, a tool
can identify classes that would benefit from being refactored
with varying degrees of accuracy [27]. Tools that solely identify
metrics without analyzing them cannot really be considered
refactoring tools in and of themselves. A study by Fernandes et
al. [6] of several tools’ recall and precision percentages showed
that, compared to a human-defined code smell reference list,
certain tools identified less than ten percent of a given code

smell, while others earned perfect 100% identification scores.
It should be noted that this does not directly compare with
regards to human accuracy in code smell detection, as there is
often little agreement among developers as to what constitutes
a significant code smell [6]. On the same note, Marinescu’s
metric-based detection strategy had a recall of 100% and a
precision of 71% compared toGodClasses identified by human
subjects [14].

The second level of functionality is the candidate suggestion.
These tools will offer suggestions on how to refactor the identi-
fied code smells. This can be particularly useful to developers
without a comprehensive understanding of the code base, as
it can offer solutions the developer may not have considered,
such as creating an interface for similar classes or identifying
classes with high-efference couplings that would make ideal
Move Method targets [12].

The third level of functionality is the candidate ranking.
These tools will take their candidates and, utilizing predic-
tive algorithms, attempt to establish a confidence rating for
which candidate would be the ideal implementation for the
given project. Several approaches for this have been presented,
such as analyzing previous changes or system complexity [26].
Several approaches were implemented as JDeodorant, a refac-
toring tool that combines detection of a set of code smells and
suggests corrections to the developer. JDeodorant Eclipse plug
in will be detailed in the following section.

JDeodorant is a well-known refactoring tool in the form of
an Eclipse plug-in [25]. It can identify a number of code smells
in compilable Java programs, including God Class, Feature
Envy, Long Method, Duplicated Code, and Type Checking
(also known as Switch Statement) [9]. In addition, JDeodorant
automatically generates potential refactoring operations for
these code smells, ranking them (when necessary) by overall
impact on the code base. Certain refactorings can be visualized
in a UML-style diagram. The tool ties into Eclipse’s refactoring
functionality, as well as providing its own, allowing the user
to preview and implement a selected operation automatically.
It also comes with a package view visualization, allowing the
user to identify which classes in the program have the highest
concentration of a particular type of code smell.

Other refactoring tools, such as inFusion and iPlasma, have
different approaches to detect code smells. They utilize metric-
based formulas to identify code smells [9]. In slight contrast,
JDeodorant identifies God Classes by utilizing clustering to
identify groupings of code entities that would improve over-
all system design, which is unrelated to the overall size of
the class [8]. While God Classes do tend to be larger in com-
parison to others, this is not inherently an indicator of a God
Class. This clustering approach differs from the purely metric-
based approach of inFusion, which utilizes class cohesion and
complexity to identify God Classes [9]. For Feature Envy, the
number of calls within function executions is measured as
distance, and refactorings are recommended that reduce the
overall “distance” within the program [7]. Its suggested refac-
toring opportunities are based on methods whose efference
would decrease if moved to another class [9].

Increasing the Trust In Refactoring Through Visualization Conference’17, July 2017, Washington, DC, USA

Recently, the raise of refactoring detection tools [], has al-
lowed the mining of how developers actually refactor their
code. Empirical studies, analyzing the commit messages as-
sociated with refactorings, have shown that refactoring can
improve quality attributes such as complexity, size, cohesion,
coupling, maintainability, and reusability [1, 3, 20, 24].

3 EXTENSION FEATURES
As we have established, trust is the primary concern of this

work, our proposed solution comes in the form of an experi-
mental visualization whose ultimate purpose is to increase the
level of trust between the developer and the refactoring tool.
The majority of the technical design decisions were made to
either keep with convention or increase ease of development.
Java was chosen as the primary development language due to
its purely object-oriented nature and refactoring techniques’
predilections towards object-oriented languages. Fernandes
et al. [6] found that out of 84 code smell detection tools, Java
dominated, both in terms of languages that the tools analyze
as well as languages the tools were developed. They also found
that an equal number of the toolswere plug-ins and standalone
programs. Rather than a standalone application, we decided
to build off an existing tool, eventually deciding on the Eclipse
plug-in, JDeodorant [25]. JDeodorant identified well-known
code smells in Java projects and then recommended the appro-
priate refactorings. For example, in order to eliminate feature
envy code smells, JDeodorant resolved it by applying move
method refactorings. JDeodorant proved to be an ideal candi-
date as there are few completely open-source refactoring tools
as popular as JDeodorant. Additionally, the Eclipse plug-in
library is fairly substantial, andwould provide an existing base
for development, limiting potential issues related to building
a new application from the ground up. In this work, our exten-
sion only supports two refactoring operations, namely, Extract
Class refactoring andMove Method refactoring, and restricted
to God Class and Feature Envy code smells.

The extension to the JDeodorant plug-in can be accessed
by selecting any code smell to refactor from the “Bad Smells”
dropdown. After the project selection has been parsed and
code smells have been identified, a new column labeled “Im-
plement?”will be visible on the far right. Checking one of these
boxes will add the selected operation to the visualization, as
seen in Figures 1 and 2. For God Classes, selecting a parent
row will also select all its children. These operations often in-
clude overlapping elements, so this is most likely useful for
scouting potential refactoring combinations. The selection can
be cleared using the “Clear Selected Candidates” button. Note
that this is the only way to remove operations from the visual-
ization; selecting a new project will not reset the selection, as
some users may want to visualize refactorings across multiple
projects. It will also only clear God Class refactorings or Fea-
ture Envy refactorings, depending on which view is selected
at the time.

3.1 Selection of Multiple Refactorings
If we want developers to better understand the impact of

refactoring in their code, it is important to add a preview feature,
which allows the vizualization of what would be the refactored
design of the code, once many refactorings are applied. De-
velopers should be able to view a UML-styled view of the
results of a single or multiple refactoring operations, that they
select prior to their execution. Utilizing the embedded code
in JDeodorant to generate diagrams, we experimented with
different methods of representing this information, as well as
how prominent and detailed each piece of information could
be. As the multiple execution, we extended the user interface
to allow developers to select multiple refactorings, instead of
only one at the time. Then we updated the refactoring engine
to schedule their execution. Since the tool’s recommended
refactorings are independent, then the order in which they are
scheduled does not matter.

Our main motivation behind visualizing the impact of mul-
tiple refactorings, and allowing their simultaneous execution,
is that, developers rarely apply only a single refactoring oper-
ation to large, enterprise-level systems. Even an experienced
user might have difficulty planning such a task. For a devel-
oper unfamiliar with a given program, trying to comprehend
what dozens of operations would do to the program would be
a daunting task, and would more than likely prompt them to
either spend significant time analyzing and understanding the
system, or blindly trust the assessment of an algorithm. This
new visualization could display all these refactorings at once,
simplifying their details into core concepts such as extraction,
relocation, and merging, allowing the user to deep dive into a
certain operation when necessary.

3.2 Visualization of Multiple Refactorings
A perhaps overlooked issue with refactoring tools is their

inability to be used in conjunction with one another. By com-
paring the refactoring candidates generated by multiple tools,
identifying the conflicts, and visualizing the combination of
the valid refactorings, developers could utilizemultiple tools to
aid in their refactoring processes, rather than a single one. This
would allow for more coverage and suggestions, and could
potentially increase the user’s confidence in the candidates if
multiple tools’ suggestions were the same.

The refactorings used in the visualization are selected from
those generated by JDeodorant. From an internal standpoint,
JDeodorant’s refactorings could be tested for conflicts. How-
ever, with this feature, any other tool capable of exporting its
refactoring candidates could be tested. Additionally, it allows
for testing across multiple, separate refactoring tools.

3.3 Refactoring Conflict Visualization
The final design is centered around combining multiple

refactorings into a single, presentable view. To visualize the
selected refactorings, click the “Visualize Selected Candidates”
button. This will open the Code Smell Visualization view, as
seen in Figure 3. The entities in this particular diagram are
classes, with the operations represented as arrows between

Conference’17, July 2017, Washington, DC, USA Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

Figure 1: Selecting an Extract Class refactoring to visualize in the extension to JDeodorant

Figure 2: Selecting multiple Move Method refactorings to visualize in the extension to JDeodorant

Figure 3: Visualization of the refactoring operations selected in Figures 1 and 2

Figure 4: Visualization of conflicting Extract Class refactorings, with a tooltip

Increasing the Trust In Refactoring Through Visualization Conference’17, July 2017, Washington, DC, USA

the classes. The scope of the diagram is the directly affected
classes. The number of entities (methods and fields) modified
is represented on the connecting line, with the number of
non-conflicting entities over the total. If a class has Extract
Class refactoring performed on it multiple times, the extracted
classes will be visualized in a single location for simplicity’s
sake. The connectionswill change color based on the number of
conflicting refactorings. If there are no conflicts, the arrow will
be green. Black indicates some conflicts, while red indicates
over 75% of the entities involved in that class’ refactorings
conflict with other operations. Hovering over either the source
class or the connectionwill cause a tooltip to appear displaying
the details about the entities involved in the operations. It also
displays which types of operations the conflicting entities are
a part of. An example of a visualization with conflicts can be
seen in Figure 4. This information can be copied for later use.
The class diagrams are simple rectangles, and are arranged
in two columns to minimize the chance that connections will
overlap with another element of the diagram, though this is
far from ideal.

4 EXPERIMENTS
In order to evaluate our extension, we performed a set of

experiments using 8 open-source systems. In this section, we
start with outlining our research questions, describe how we
address them, and then we discuss the obtained findings. We
have identified two research thrusts that address the applica-
bility, the performance in comparison to existing refactoring
approaches, and the usefulness of the extension. Our research
questions are as follows:

RQ1: To what extent can our approach help the simulta-
neous selection and execution ofmultiple refactorings to de-
velopers?

The specific benefits of refactoring tools are difficult to quan-
tify due to the unique nature with which developers refactor
and utilize refactoring tools. While these can be inferred and
elicited through surveys and human studies, it is inherently
impossible to completely understand the inner workings of
every developer, divided into groups by age, experience, and
personal preferences. Therefore, if causation is out of reach,
one can at the very least identify correlations. Our goal is not
to prove that this approach has a statistically proven benefit
for developers. Rather, we intend to discover through concen-
trated evaluations and individual, written responses if there is
a correlation between the use of this type of visualization and
noticeable benefits to refactoring, including both time spent
refactoring and the developer’s willingness to use the given
refactoring procedure. This serves as the first step in showing
that this avenue of research may yet bear fruit.

RQ2: Can the use of this extension make the suggested
refactorings more trustworthy in the eyes of the developer?

As the ultimate goal is to increase the level of trust between
the developer and the tool, we asked a select number of de-
velopers what their impressions of the extension and its visu-
alization were, and whether or not it helped them to better
understand the refactorings proposed by JDeodorant. This

Table 1: Selected Projects
Project Release # Classes KLOC # CodeSmells
Xerces-J v2.7.0 991 240 91
JHotDraw v6.1 585 21 25
JFreeChart v1.0.9 521 170 72
GanttProject v1.10.2 245 41 49
Apache Ant v1.8.2 1191 255 112

Rhino v1.7R1 305 42 69
Log4J v1.2.1 189 31 64
Nutch v1.1 207 39 72

particular wording was chosen due to “trustworthiness” being
a difficult concept to quantify. Additionally, this provides the
user with the option to directly compare two states (with and
without the extension).

4.1 Projects Under Study
To evaluate the extension, we used a set of well-known,

open-source Java projects. We applied the extension to eight
of these projects: Xerces-J, JHotDraw, JFreeChart, GanttProject,
Apache Ant, Rhino, Log4J, and Nutch. We selected these eight
systems for the evaluation because they range from medium
to large in size, they are open-source, they have been actively
developed over the past ten years, and their development has
not experienced slowdown due to their design. We used mul-
tiple projects rather than a single one to mitigate the issue of a
project being easier or harder to refactor than others. Table 1
provides descriptive statistics about these eight programs.

4.2 Qualitative Analysis
For the eight Java projects chosen, a combined total of ten

classes with potential code smells were manually identified in
each project. The code smells were restricted to God Class and
Feature Envy, as these were the only code smells supported by
the extension at the time of writing. These projects were then
grouped into pairs.

Eight developers experienced with refactoring operations
participated in this evaluation. These were all developers with
experience using refactoring tools, as we desired the input
of those familiar with this domain rather than those with no
experience, as the extension had not been developed with
that use case as its primary goal. All that was made known to
this author was the number of participants, so a folder was
constructed for each participant, containing a set of written
instructions, a video tutorial demonstrating the extension’s use,
and the following requisite files. Each developer was provided
with a copy of JDeodorant with the extension and two pairs
of projects (four of the eight projects in total). They were each
given a list of the classes containing the code smells, and asked
to refactor the projects. The developers were instructed to
refactor one pair of projects using the tool and visualization
(extension), while the other pair were to be refactored without
the aid of the visualization (see Table 2). The developers were
asked to record how long it took to refactor each pair of projects.

Conference’17, July 2017, Washington, DC, USA Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

Table 2: Distribution of Programs Among Developers
Dev. Programs Refactoring Tool

Dev-1 JFreeChart, JHotDraw JDeodorant
Apache Ant, GanttProject JDeodorant + Ext

Dev-2 Apache Ant, GanttProject JDeodorant
JFreeChart, JHotDraw JDeodorant + Ext

Dev-3 Xerces-J, Rhino JDeodorant
Log4J, Nutch JDeodorant + Ext

Dev-4 Log4J, Nutch JDeodorant
Xerces-J, Rhino JDeodorant + Ext

Dev-5 JFreeChart, JHotDraw JDeodorant
Apache Ant, GanttProject JDeodorant + Ext

Dev-6 Apache Ant, GanttProject JDeodorant
JFreeChart, JHotDraw JDeodorant + Ext

Dev-7 Xerces-J, Rhino JDeodorant
Log4J, Nutch JDeodorant + Ext

Dev-8 Log4J, Nutch JDeodorant
Xerces-J, Rhino JDeodorant + Ext

Therewere no requirements given onwhich projects to refactor
first.

Additionally, each developer was provided with a short
questionnaire. This asked for the developers to rate the fea-
tures of the extension, provide feedback on its features and
potential improvements and additions, and to describe how
this particular extension affected both their refactoring process
and opinion of trust in the refactoring tool.

4.3 Refactoring Times
The refactoring experiment showed little correlation in refac-

toring times between developers asked to refactor the same
projects with the same tools. Differences between refactoring
times tended to vary between ten and 15 minutes, with ex-
tremes as low as five and as high as 29.

As shown in Figure 5, the total time to refactor the projects
decreased when using the visualization in all but one instance.
Feedback from the developers indicated universal apprecia-
tion for the visualization. Responses indicated that it helped
principally with planning which refactorings to implement, as
well as understanding what the changes to the system design
would be. The ability to plan multiple refactorings at once,
or “batch fix,” seemed to help significantly with refactoring
times, even when the developers needed to perform additional
refactoring afterwards. One developer noted that being able
to select multiple candidates alone was a benefit. While some
claimed that using the tool was easier than their static analysis
methods, others acknowledged its benefits while still retain-
ing their preference for manual refactoring, at least so far as
defining refactoring operations.

4.4 Questionnaire Results
To answer our research questions, we analyzed the re-

sponses from the participating developers. The developers
noted that the visualization was able to identify and prevent

several conflicts. However, on at least two occasions an opera-
tion caused the code to break, forcing the developer to refactor
that portion manually. Expanding the functionality of the con-
flict detectionwith additional checksmay help to prevent these
issues.

A number of developers commented on the lack of informa-
tion displayed by the visualization. In some cases the defects
were not adequately described. This makes sense, as the exten-
sion only visualizes the solutions to be implemented, not the
inherent problems with the classes. This made experimenting
with the selected visualizations to find the right batch some-
what more time consuming and difficult than was necessary.
One developer noted that this might also be mitigated prior
to visualization if the extension was able to easily convey the
details of the suggested refactoring candidates. This is possible
at themoment with the “visualize code smell” feature (located
by right-clicking on a refactoring candidate), but this process
is also slow and cumbersome when dealing with dozens of
potential refactorings for a single class. All in all, additional
tooltip information would help increase the visualization’s
viability for helping developers choose from multiple refactor-
ing candidates by adding them to the visualization first and
deselecting them later.

The developers also had positive responses to the core fea-
tures of the base JDeodorant tool, most notably its ability
to implement the refactoring operations automatically. Com-
ments regarding the user interface varied more widely. Some
responded that they found the interface easy to use and under-
stand, while others found it unintuitive, especially the button
icons. The ability to sort the refactorings was suggested, so the
user interface could be improved by implementing more fea-
tures to make it easier for developers to quickly identify which
refactorings they’re looking for (such as a search feature).

4.5 Feature Ratings
The features the subjects were asked to rate on a scale of one

to five, with five being the best, were the selection of multiple
refactorings, the visualization of multiple refactorings, and the
visualization of conflicting refactorings. These results can be
seen in Table 3. All scored average ratings from between 4.125
and 4.5.

One of the most requested features was the ability to imple-
ment (and by extension, preview) all the selected refactoring
operations at once. The developers acknowledged that visual-
izing their selected refactorings enabled them to refactor each
one sequentially with confidence without having to run the
identification feature after every application. This feature was
introduced in the design phase of the extension’s development,
but was determined to be out of scope when we discovered
there was no easy way to combine the operations into a sin-
gle operation, rather than executing them automatically in
sequence, which was deemed not significant enough of an
improvement to warrant the necessary development time.

Increasing the Trust In Refactoring Through Visualization Conference’17, July 2017, Washington, DC, USA

Figure 5: Refactoring Times per Developer

Table 3: Developer Ratings of Features (1:Bad, 5:Good)

Feature Dev-1 Dev-2 Dev-3 Dev-4 Dev-5 Dev-6 Dev-7 Dev-8 Average
Score

Selection of multiple refactorings 3 5 3 5 3 5 5 4 4.125
Visualization of multiple refactorings 5 5 3 5 5 4 4 5 4.5
Visualization of conflicting refactorings 5 4 4 4 4 5 4 4 4.25

4.6 Limitations of our extension
Naturally there are many languages aside from Java and its

object-oriented cousins that utilize refactoring, and there are a
multitude of development environments used for Java alone.
While many aspects of the extension can be adapted for use in
various environments with various languages, the technical
aspects of the extension must remain limited to this specific
language and environment. For example, many elements of
the visualizations were immutable, such as the tooltips, and
the code smell views lacked native support for checkboxes.
Finding ways around these issues was not impossible, but
restricted ideal and expedient development at times.

Additionally, the extension’s design lacks input from a de-
signer with experience in human-computer interaction, which
could negatively impact its usability [5]. One of the facts that
constrained the development of the extension was the use of
built-in visualization tools in the Eclipse IDE, since JDeodor-
ant is a plugin for that programming environment. The exten-
sion could undoubtedly be improved not only with expanded
functionality, but with a stronger emphasis on making the
extension easy to understand and use, and the visualizations
clear and pleasing to the viewer. One improvement could be
arranging the diagrams using a visually-appealing graphing
algorithm, such as Delaunay triangulation [13], instead of a
two-column grid.

5 THREATS TO VALIDITY
A potential threat relates to the experimentation itself. De-

spite having eight separate subjects to evaluate the tool, each
developer has their own preferences and experiences that af-
fect their ability to effectively utilize certain refactoring tools.
These varying level of skills can affect their ability to use the
tool and its effects, which is why we assigned each developer
programs to refactor with and without the extension. This
should help mitigate the learning curve and fatigue threat
inherent to using the extension. Additionally, to mitigate the
impact of a developer being particularly familiar or unfamiliar
with refactorings performed on one of the projects, each devel-
oper was provided with two different projects. Furthermore,
we instituted no time limit on the refactoring or questionnaire,
and provided an instructional video walking the developer
through using the tool and extension to refactor a sample
project.

As the crux of this work deals with non-quantifiable con-
cepts, having an accurate interpretation of human responses is
a vital aspect of results analysis. Participants often have wildly
varying and heterogeneous opinions. One of the ways we mit-
igated this threat to validity is by quantifying our results with
a rating system. By having participants rate issues before re-
sponding to them, we can put together a rough indication of
the developers’ responses at a glance. However, this approach

Conference’17, July 2017, Washington, DC, USA Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

does not allow for concrete statistical conclusions since devel-
opers normally interpret these ratings in their own way, with
no universal reference. Additionally, this still limits the num-
ber of participants we can evaluate effectively, because of the
necessity of performing a manual analysis and interpreting
each participant’s responses. Ultimately, we chose the partic-
ipant and project sample sizes that focus on receiving clear
feedback on the extension’s function and its impact, rather
than to definitively prove its statistical effectiveness for a given
demographic.

6 CONCLUSION & FUTUREWORK
In this paper, we extended an existing refactoring tools, to

better bridge the gap between refactorings and developers,
through visualizing it. We address the limited transparency
by providing developers with the possibility of verifying their
refactoring outcomes. Practically, the extended tools provides
timely visualization of multiple selected refactorings, and de-
tects whether they may be conflicting. The extension encour-
ages also the usage of various possible refactoring approaches
through importing their exported refactorings.

The validation of the extension was performed through in-
vestigating whether it reduces refactoring effort, in terms of
execution time. To do so, we convenience sampled eight devel-
opers, known to have participated in previous studies of refac-
torings, and we provided them with code smells to refactor.
These code smells were detected using JDeodorant in 8 popu-
lar open-source tools. The feedback received shows promising
results with respect to productivity and usability. Ultimately,
this work proposes a novel approach to aid software develop-
ers in better understanding how to semi-automatically refactor
their systems.

As future work, wewould be ecstatic to see work continue in
this vein of increasing trust between developer and tool, even
if it is not related to our visualization. New types of visualiza-
tions, or new approaches altogether, will help to increase this
topic’s body of knowledge and eventually lead to at least one
feasible solution. While our design went through several itera-
tions, it does not mean that aspects deemed out of our scope
could not be expanded upon in future projects and shown to
be viable approaches for increasing a tool’s level of trust.

REFERENCES
[1] Eman AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Can refac-

toring be self-affirmed? an exploratory study on how developers document
their refactoring activities in commit messages. In 2019 IEEE/ACM 3rd
International Workshop on Refactoring (IWoR). IEEE, 51–58.

[2] Eman Abdullah Alomar. [n. d.]. Towards Better Understanding Devel-
oper Perception of Refactoring. In IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 624–628.

[3] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and
Marouane Kessentini. 2019. On the impact of refactoring on the rela-
tionship between quality attributes and design metrics. In International
Symposium on Empirical Software Engineering and Measurement. 1–11.

[4] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto.
2014. Recommending refactoring operations in large software systems. In
Recommendation Systems in Software Engineering. Springer, 387–419.

[5] Alan Dix. 2009. Human-computer interaction. Springer.
[6] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and

Eduardo Figueiredo. 2016. A review-based comparative study of bad

smell detection tools. In Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering. ACM, 18.

[7] Marios Fokaefs, Nikolaos Tsantalis, and Alexander Chatzigeorgiou. 2007.
Jdeodorant: Identification and removal of feature envy bad smells. In
International Conference on Software Maintenance. 519–520.

[8] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzi-
georgiou. 2011. JDeodorant: identification and application of extract class
refactorings. In Proceedings of the 33rd International Conference on Software
Engineering. ACM, 1037–1039.

[9] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. 2012. Auto-
matic detection of bad smells in code: An experimental assessment. Journal
of Object Technology 11, 2 (2012), 5–1.

[10] Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of
existing code. Addison-Wesley Professional.

[11] Almas Hamid, Muhammad Ilyas, Muhammad Hummayun, and Asad
Nawaz. 2013. A comparative study on code smell detection tools. Interna-
tional Journal of Advanced Science and Technology 60 (2013), 25–32.

[12] Yoshio Kataoka, David Notkin, Michael D Ernst, and William G Griswold.
2001. Automated support for program refactoring using invariants. In
IEEE International Conference on Software Maintenance (ICSM’01). 736.

[13] Der-Tsai Lee and Bruce J Schachter. 1980. Two algorithms for constructing
a Delaunay triangulation. International Journal of Computer & Information
Sciences 9, 3 (1980), 219–242.

[14] Radu Marinescu. 2004. Detection strategies: Metrics-based rules for de-
tecting design flaws. In Software Maintenance, 2004. Proceedings. 20th IEEE
International Conference on. IEEE, 350–359.

[15] Mohamed WiemMkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-
moy Deb, and Mel Ó Cinnéide. 2014. High dimensional search-based
software engineering: finding tradeoffs among 15 objectives for automat-
ing software refactoring using NSGA-III. In Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation. 1263–1270.

[16] Mohamed WiemMkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-
moyDeb, andMel ÓCinnéide. 2014. Recommendation system for software
refactoring using innovization and interactive dynamic optimization. In
Proceedings of the 29th ACM/IEEE international conference on Automated soft-
ware engineering. ACM, 331–336.

[17] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel
Ó’Cinnéide, and Kalyanmoy Deb. 2014. Software refactoring under uncer-
tainty: a robust multi-objective approach. In Annual Conference on Genetic
and Evolutionary Computation. 187–188.

[18] MohamedWiemMkaouer, Marouane Kessentini, Mel Ó Cinnéide, Shinpei
Hayashi, and Kalyanmoy Deb. 2017. A robust multi-objective approach to
balance severity and importance of refactoring opportunities. Empirical
Software Engineering 22, 2 (2017), 894–927.

[19] WiemMkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu,
Slim Bechikh, Kalyanmoy Deb, and Ali Ouni. 2015. Many-objective soft-
ware remodularization using NSGA-III. ACM Transactions on Software
Engineering and Methodology (TOSEM) 24, 3 (2015), 1–45.

[20] Raimund Moser, Alberto Sillitti, Pekka Abrahamsson, and Giancarlo Succi.
2006. Does refactoring improve reusability?. In International Conference on
Software Reuse. 287–297.

[21] Christian D Newman, Mohamed Wiem Mkaouer, Michael L Collard, and
Jonathan I Maletic. 2018. A study on developer perception of transfor-
mation languages for refactoring. In Proceedings of the 2nd International
Workshop on Refactoring. 34–41.

[22] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and
Kalyanmoy Deb. 2016. Multi-criteria code refactoring using search-based
software engineering: An industrial case study. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 25, 3 (2016), 1–53.

[23] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and M. S.
Hamdi. 2015. Improving multi-objective code-smells correction using
development history. Journal of Systems and Software 105 (2015), 18–39.

[24] Anthony Peruma, Mohamed Wiem Mkaouer, Michael John Decker, and
Christian Donald Newman. 2019. Contextualizing rename decisions us-
ing refactorings and commit messages. In 2019 19th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 74–85.

[25] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2011. Identification of
extractmethod refactoring opportunities for the decomposition ofmethods.
Journal of Systems and Software 84, 10 (2011), 1757–1782.

[26] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2011. Ranking refactor-
ing suggestions based on historical volatility. In Software Maintenance and
Reengineering (CSMR), 2011 15th European Conference on. IEEE, 25–34.

[27] Eva Van Emden and Leon Moonen. 2002. Java quality assurance by detect-
ing code smells. In Reverse Engineering, 2002. Proceedings. Ninth Working
Conference on. IEEE, 97–106.

	Abstract
	1 Introduction
	2 Related Work
	3 Extension Features
	3.1 Selection of Multiple Refactorings
	3.2 Visualization of Multiple Refactorings
	3.3 Refactoring Conflict Visualization

	4 Experiments
	4.1 Projects Under Study
	4.2 Qualitative Analysis
	4.3 Refactoring Times
	4.4 Questionnaire Results
	4.5 Feature Ratings
	4.6 Limitations of our extension

	5 Threats to Validity
	6 Conclusion & Future Work
	References

